Index

- Ch1: Specifications
- Ch2: Basic Instructions
- Ch3 : Step Ladder Instructions
- Ch4 : Advanced Devices
- Ch5 : Applied Instructions
- Ch6 : Special Auxiliary Relay & Data Register

Appendix A RS422 Interface Pin Arrangement

Appendix B Troubleshooting & Error Code List

Applied instructions allow the user to perform complex data manipulations, mathematical operations. Each applied instruction has unique mnemonics and special function numbers. Each applied instruction will be expressed using a table similar to that show below. And will be found at the beginning of the description of each new instruction.

COMPARE

	FNC(10)		16 bit	16 bits:CMP & CMP(P) 7 Steps						J2n	J3n		
D	CM	P	Ρ	32 bit	ts:(D)CMP&(D)CMP(P)									
Operands: < [S							1.][S2.] —			>			
		K.⊦	ł.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
Oper	Operands:													
		Х		Y	М	S								

Oper -and		Bit Devices				BitCombineToWord Devices		Word Devices		Index Pointer			Str- ing	Constant Real numb								
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•		•					•				•	٠	
[S2.]								•	•	•	•	•		•		•	•			•	•	
[D.]			•																			

No modification of the instruction mnemonic is required for 16 bit operation, and it will operate continuously, i.e. on every scan cycle of the user program, the instruction will operation and provide a new result.

However, pulse operation requires a 'P' to be added directly after the mnemonic, while 32 bit operation requires a "D" to be added before the mnemonic. This means that if an instruction was being used with both pulse and 32 bit applied operation it would look like D***P, where *** was the basic mnemonic.

The 'pulse' function allows the associated instruction to be Activated on the rising edge of the control input. The Instruction is driven ON for the duration of one program Scan cycle. Thereafter, even if the control input remains on the associated instruction will not be active.

Following is Symbols list:

[D.]: Destination device

[S.]: Source device

[m,n]: Number of active devices, bits or an operational constant.

Following is instruction modifications:

*** - An instruction operation in 16 bit mode, where *** identifies the instruction mnemonic.

***P- An instruction modified to use 16 bits pulse operation.

D*** - An instruction modified to use 32 bits operation.

Condition Jump

	FNC(00)		16 bits: CJ & CJ(P)		J2n	J3n
	CJ	Ρ				
~						

Operand: P00 ~ P63

- Example (A): If X0 ON forces the program to jump to LAB P0, any program area which is skipped will not update. Output statuses will not change even input the devices.
- Example (A): If miss LAB P0 pointer, then X0 ON will jump directly to END.
- If a backwards jump is used, then need to care the watchdog timer overrun.
- If LAB pointer is duplicated to use, only the last pointer is effective.
- Example (B): X0 ON forces the program to jump to the second LAB pointer.
- Example (C): Many CJ statements can be assigned to jump to the same pointer.

Subroutine Call

	FNC(01)		16 bits: CALL & CALL(P) 3 Steps		J2n	J3n
	CALL	Ρ				
0		D 00				

Operand: P00~P63

Subroutine Return

FNC(02)	16 bits: S	RET 1 Steps	J2n	J3n
SRET				

Interrupt Return

	FNC(03)	16 bits: IRET 1 Steps		J2n	J3n
	IRET				
O	au di Mana				

Operand: None

Enable Interrupt

	FNC(04)	16 bits: El 1 Steps		J2n	J3n
	EI				
0	au di Niau a				

Operand: None

Disable Interrupt

FNC(05	16 bits: DI1 Steps		J2n	J3n
DI				

Operand: None

	Enable Interrupt
	EI The controller has a default status of disabling interrupt operation.
	Enable X01 Interrupt
	RST M8051 ~ When relative special auxiliary register M805n is activate
	Disable Interrupt an interrupt routine is disabled.
	FEND ··· Interrupt routine are always programmed after a FEND instruction.
	X02
I 101	——————————————————————————————————————
	A (Interrupt routine)
	IRET J
	END

Number of Interrupt pointer

<< Note >>

- When an interrupt program execute, other Interrupt Call is ineffective.
- ◆ If Interrupt occur within the range of Disable Interrupt (DI~EI), this interrupt request signal is stored temporarily, and execute until within the range of Enable Interrupt (EI~DI).
- ◆ When Disable Interrupt flag M805∆ act, the corresponding Interrupt input will not be executed.
- In interruption program, FNC(50) REF command can not be used. (Ex: section A in above sample program)

Timer Interrupt program

				EI
	M8002	*** enable interrupt ro	outine I8nn *	**
			RST	M8058
				FEND
1801	M8000			
			DINC	D1000
				1
				IRET
				END

Caculated Interrupt routine executed time

-								EI
	M8002		k	*** enable ii	nterrupt routii	ne I8nn ***	<	
-							RST	M8058
						-		
			*** Enat	ole D8099 ring	counter(0.1	ms) ***		
	F						SET	M8099
1004	M0000							FEND
1801	M8000							
-						MOV	D8099	D900
	M8000					г		
							DINC	D1000
	**	* D902=Time (of executed i	interrupt routir	ne ***			
			1					
-	>	D8099	D900		SUB	D8099	D900	D902
								IRET
ŀ								END

First End

FNC(06)	16 bits: FEND 1 Steps		J2n	J3n
FEND				
Operand: Nene				

Operand: None

- A FEND instruction indicates the first end of a main program and the start of the subroutine program area to be used.
- Multiple FEND instruction can be use to separate different subroutines.
- When FEND is executed, the program return to Step 0.
- FEND can't be used after an END instruction.

Watch Dog Timer

FNC(07)	16 bits: WDT 1 Steps	J2n	J3n
WDT P			

Operand: None

X00	
	WDT

- This instruction will compare the cycle time with the content of special data register D8000.
- If the watch dog timer > the content of D8000, then error occurred and error code is 6309.
- Can use MOV instruction to change content of special data register D8000.
- If do not write WDT instruction in program, then the watch dog timer is ineffective.

FOR

FNC(08)	16 bit	s: FOR					7	Steps		J2n	J3n
FOI	R											
Operands:	←				[S.]							
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			

Oper -and		Bit Devices X Y M S T C Dn.						Bit	_	neToWo vices	ord	W	ord [Devio	ces	-	nde: ointe	-	Str- ing		onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ	U	К	Н	E
[S.]								•	•	•	•			•			•			•	٠	

NEXT

FNC(09)	16 bits: NEXT 7 Steps	J2n	J3n
NEXT			

Operand: None

<			
	FOR	K 4	
5			_ \
	FOR	D02	
5			
	NEXT	1	
S			•
	NEXT	2	
S			
1			

- After program B execute 4 times, then execute the program below ② NEXT.
- ◆ If the content of D0Z is 5, then program B is executed
 4 times, and program A will be executed 20 times.
- The maximum nest level of FOR –NEXT is 5 levels.

Compare

	FNC((10)		16 bi	ts: CMP	& CMF	P(P)			7	7 Steps		J2n	J3n
D	СМ	ΡI	D	32 bi	ts: (D)C	MP&(D)	CMP(P))		13	3 Steps			
Opera	ands:	←				[:	S1.][S2.]			\rightarrow			
		K.H.		KnX	KnY	KnM	KnS	Т	С	D	V,Z			
Opera	ands:		+		[D.]	\longrightarrow								
		Х		Y	М	S								

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devio	es		nde: ointe		Str- ing		onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	•	•	•		•	•			•	•	
[S2.]								•	•	•	•	•	•	•		•	•			•	•	
[D.]		•	•																			

Flag:

- Data of [S1.] is compared with data of [S2.] and [D.] will be changed according to the result. This will automatic occupy 3 bit destination devices from head address of designation M10 ~ M12.
- Full algebraic comparisons are used, i.e. -10 smaller than +2.
- When X0 OFF, then [D.] bit devices status will not be changed.

Zone Compare

	FNC(11)		16 bit	ts: ZCP	& ZCP(P)			9	9 Steps		J2n	J3n
D	ZCF	P	Ρ	32 bit	ts: (D)Z0	CP&(D)	ZCP(P)			17	7 Steps			
Opera	ands:	←				[S1.][S2.][S3.]			\longrightarrow			
		K.F	١.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
Opera	ands:		•	←	[D.]	\longrightarrow	•							
		Х		Y	М	S								

Oper -and			В	it De	evice	es		Bit		neToWo rices	ord	W	ord [Devio	ces		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	•	•	•		•	•			•		
[S2.]								•	•	•	•	۲	•	•		•				•		
[S3.]								•	•	•	•	•	•	•		•	•			•	•	
[D.]				\bullet																		

Flag:

 Content of [S3.] is compared with data range of [S1.] and [S2.] and [D.] will be changed according to the result. This will automatic occupy 3 bit destination devices from head address of designation M10 ~ M12.

♦ Set [S1.] ≤ [S2.], if [S1.] > [S2.], then data of [S2.] is as same as data of [S1.].
♦ Full algebraic comparisons are used, i.e. -10 smaller than +2.

• When X0 OFF, then [D.] bit devices status will not be changed.

Move

	FNC(12)		16 bi	ts: MO∖	/ & MO\	/(P)			{	5 Steps		J2n	J3n
D	MO	V	Ρ	32 bi	ts: (D)M	IOV&(D)	MOV(P))		!	9 Steps			
Opera	ands:	←					[S.]							
	Γ	K.H	I.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	-				←			[D.]			\longrightarrow			

Oper -and			В	it De	evice	es		Bit		neToWo rices	ord	W	ord [Devio	es		nde: ointe		Str- ing		onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•			\bullet	•								
[D.]									•	•	•	•	\bullet	•		•	•					

X0		[S.]	[D.]
├	MOV	D0	K4Y0

• When X0 ON, contents of source device [S.] copied to destination device [D.].

MSE	3						0	00							LSB
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Y17		r										1	/		Y0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

• When M8027 ON, CPU will write content of [S.] into EEPROM, [D.] only D register can be used.

Note: When M8027 ON, for avoid to damage EEPROM, must be used Pulse Instruction MOV(P).

Shift Move

Reserved

Complement

	FNC(14)		16 bits: CML & CML(P) 5 Steps		J2n	J3n
D	CML	Ρ	32 bits: (D)CML & (D)CML(P) 9 Steps			

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	Devices KnX KnY KnM KnS ⁻				С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•		•			•	•			٠	٠	
[D.]											•											

Operands:	←				[S.]				──→
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z
			~			[D.]			>
						[0.]			- 1
X0			[S.]	[D	.]				
	- CM	CML		K4`	(0				
			D0						

• Each data bit within the source device [S.] is inverted and then copied to the designated destination [D.].

MSE	3						D	0							LSB
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Y17 ↓ ↓												Y0			
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

Block Move

FNC((15)	16	bi	ts: BMC	OV & BN	10V(P) ·				7 Steps		J2n	J3n
BMC	OV P												
Operands:		←				[S.]_			>	•			
	K.H.	Kn	X	KnY	KnM	KnS	Т	С	V,Z				
	← n →			←		[C).]—			•			
	n ≤ 128												

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing		onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•		•	۲		•								
[D.]									•	•	•	۲	•	•								
[n.]																				•		

Flag: None

	[S.]	[D.]	[n.]
BMOV	D10	D20	K10

When X0 ON, the move as follows,

D19	D18	D17	D16	D15	D14	D13	D12	D11	D10
$\sqrt{0}$	↓ ⑨	$\sqrt{8}$	\mathbf{v}	√ ©	↓5	\mathbf{V}	↓ ③	\mathbf{v}	\mathbf{v}
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8

• When transmitting number is repeat, the move as follows,

D10	D11	D12	D13	D14	D15	D16	D17	D18	D19
$\sqrt{0}$	V 9	√ ®	\mathbf{v}	↓ ©	\$€	4	√ ③	\mathbf{v}	\mathbf{v}
D12	D13	D14	D15	D16	D17	D18	D19	D20	D21

• When M8027 ON, CPU will write the content of [S.] into EEPROM, [D.] only D register can be used.

Note: When M8027 ON, for avoid to damage EEPROM, must be used Pulse Instruction MOV(P).

Fill Move

	FNC(16)		16 bi	ts: FMC	V & FM	OV(P) -		 	7 Steps		J2n	J3n
D	FMO	V	Ρ	32 bi	ts: (D)F	MOV &	(D)FMO	V(P) -	 1;	3 Steps			
Opera	ands: -	←					[S.]			>			
		K.H		KnX	KnY	KnM	KnS	Т	V,Z				
	-	← n ·	→		←		[C).]—	\rightarrow	•			
	I	n ≤ 12	28										

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta Il nun	
Туре	X	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•			•		•	•			•		
[D.]									•	•	•	•	•	•								
[n.]																						

X0		[S.]	[D.]	n
	FMOV	K0	D0	K10
	K0 →	(D00 ~D09))	

Exchange

	FNC	(17)		16 bi	ts: XCH	& XCH	(P)			5	Steps	J2n	J3n
D	XC	Н	Ρ	32 bi	ts: (D)X	CH & (C)XCH(F	P) (9	Steps		
Opera	ands:				←		— [D1.] [D	2.]		>		
		K.H	١.	KnX	KnY	KnM	KnS	Т	С	D	V,Z		

Oper -and			В	it De	evice	es		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing	_	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D1.]									•	•	•	•	•	•		۲	•					
[D2.]									•	•	•		•	•		•	•					

X0		[D1.]	[D2.]
	XCH	D10	D20

Before : (D10)=100 After : (D10)=200 (D20)=200 (D20)=100

<< Function of Expanded >> SWAP

- If M8160 ON, [D1.] and [D2.] are the same word device, then the upper 8 bits and the lower 8bits will exchange.
- If [D1.] and [D2.] are not the same device, error flag M8067 ON, error code 6705. Error step number is stored to D8069 and not be executed.

32 bits: Upper 8 bits Lower 8 bits Upper 8 bits Lower 8 bits Before executing (D11,D10)=87654321H=80 , After executing 65872143H

BCD (BINARY CODE TO DECIMAL)

	FNC(18)		16 bi	its: BCD	& BCD	(P)			5	Steps		J2n	J3n
D	BCI	D	Ρ	32 bi	its: (D)B	CD & (D)BCD(F	P) ·		9	Steps			
Opera	ands:		•	<			_ [S	.] —						
		K.H	۲.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
					←			[D.]						

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX					С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•	•	•									
[D.]																						

X0		[S.]	[D.]
	BCD	D10	K2Y0

• The binary source data [S.] is converted into an equivalent BCD number and stored to the destination device [D.].

If the converted BCD number exceeds the operational ranges of 0 to 9999 (16 bit operation) or 0 to 99999999 (32 bit operation), an error will occur. Error flag M8067 ON, error code 6705 and error step number stored to D8069. Program will be executed continuously, but result will not be stored to [D.]

• This instruction can be used to output data to a seven segment display directly.

BIN (DECIMAL CODE TO BINARY)

	FNC(19)		16 bi	ts: BIN	& BIN(P)				5 Steps	J2n	J3n
D	BIN	1	Ρ	32 bi	ts: (D)B	IN & (D)	BIN(P)				9 Steps		
Oper	ands:			←			[S	S.] —			>		
		K.⊦	١.	KnX	KnY	KnM	KnS	Т	С	D	V,Z		
					←			[D.]					

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devio	es		nde: ointe		Str- ing	_	onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•	•	•	•		٠	•					
[D.]									•					•			•					

X0		[S.]	[D.]
	BIN	D10	K2Y0
-			

• The BCD source data [S.] is converted into an equivalent binary number and stored at the destination device [D.].

• If the source data is not provided in a BCD format, an error will occur. Error flag M8067 ON, error code 6705 and error step number stored to D8069.

• The device [S.] can't be used constant K/H.

Addition

	FNC(2	0)	16 k	oits: ADD	& ADD	(P)			7	' Steps		J2n	J3n
D	ADD	P	32 k	oits: (D)A	.DD &(D)ADD(P)) ·		3 Steps				
Opera	ands: <				[:	S1.][S2.] —			\longrightarrow			
		K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
				←			[D.]			→			

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	ces		nde: oint		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•		•	•		•	۲			٠	٠	
[S2.]								•	•	•	•		•	•		•	•			•	•	
[D.]									•	•	•		\bullet	•		•	•					

Flag: M8020, M8021, M8022

X0		[S1.]	[S2.]	[D.]
	ADD	D10	D12	D14
		(D10) + (D12) →	(D14)

• The data contained within the source devices [S1.], [S2.] is added and the result stored to specified destination devices [D.].

◆ All calculations are algebraically processed, i.e. 5+(-8) = -3.

• If the result of a calculation is "0", then zero flag M8020 ON.

• If the result exceeds 32,767 (16 bit limit) or 3,147,483,647 (32 bit operation), the carry flag M8022 ON.

◆ If the result exceeds -32,767 (16 bit limit) or -2,147,483,647 (32 bit limit), the borrow flag M8021 ON.

Subtraction

	FNC(21)		16 bi	ts: SUB	& SUB	(P)			7	Steps		J2n	J3n
D	SUE	в	Ρ	32 bi	ts: (D)S	UB &(D)SUB(P))		13	Steps			
Opera	ands:	←				[\$	S1.][S2.]			\rightarrow			
		K.H	۲.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	-				←			[D.]			>			

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing		onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	•		•		•	•				•	
[S2.]								•	•		•	•	۲	•		۲	۲				•	
[D.]									•	•	•		lacksquare	•		•	•					

Flag: M8020, M8021, M8022

X0		[S1.]	[S2.]	[D.]
	SUB	D10	D12	D14
		(D10) - (D12) →	(D14)

• Content of [S1.] subtract content of [S2.], and the result stored to specified destination devices [D.].

♦ All calculations are algebraically processed, i.e. 5 - 8 = -3.

• The MSB of devices is sign (0:Positive, 1:Negative).

Multiplication

	FNC(2	22)		16 bi	ts: MUL	& MUL	(P) ·			7	Steps		J2n	J3n
D	MUI	L	Ρ	32 bi	ts: (D)N	IUL &(D)MUL(P))		13	Steps			
Oper	ands:	←				[S1.][S2	.] —			── >			
	Γ	K.H		KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	-				←			[D.]			\rightarrow			

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	ces		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•		•		•	•		•	•			٠	٠	
[S2.]								•	•	•	•	•	•	•		•	•			•	•	
[D.]									•	•	\bullet		\bullet	•		•	\bullet					

X0		[S1.]	[S2.]	[D.]
	MUL	D10	D12	D14

16 bit: (D10) × (D12) → (D15, D14)

X0		[S1.]	[S2.]	[D.]
<u> </u>	DMUL	D10	D12	D14

32 bit: (D11,D10) × (D13,D12) → (D17,D16,D15,D14)

• The primary source [S1.] is multiplied by the secondary source [S2.]. The result is stored to destination [D.].

Division

	FNC(2	23)	16	bits: DIV	& DIV(P)			7	Steps		J2n	J3n
D	DIV	P	32	bits: (D)D	0IV & (D)	DIV(P)			13	Steps			
Opera	ands:	←			[S1.][S2	.] —			→			
		K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
				←──			[D.]			\longrightarrow			

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	es		nde: oint		Str- ing	-	onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•			•		\bullet				•			•	•	
[S2.]								•				•	\bullet	•		•	۲			٠	٠	
[D.]									•	•	•		\bullet				•					

X0		[S1.]	[S2.]	[D.]
	DIV	D10	D12	D14

Dividend divisor quotient remainder

 $(D10) \div (D12) \rightarrow (D14) \dots \dots (D15)$

16 bits 16 bits 16 bits	16 bits
-------------------------	---------

X0		[S1.]	[S2.]	[D.]
	DDIV	D10	D12	D14

Dividend divisor quotient remainder (D11,D10) \div (D13,D12) \rightarrow (D15,D14)......(D17,D16)

32 bits 32 bits 32 bits 32 bits

• The primary source [S1.] is divided by the secondary source [S2.]. The result is stored to destination [D.].

 If value of source device [S2.] is "0" (zero), then an operation error is executed. Error code 6706 and error step number stored to D8069, the program operation is cancelled.

 V1.17 edition : If value of source device [S2.] is "0" (zero), then will not execute and directly jump to next instruction.

Increment

	FNC(24)		16 bits: INC & INC(P)		J2n	J3n
D	INC	Р	32 bits: (D)INC & (D)INC(P)			

Oper			B	it De	vice	20		BitCombineToWord				Word Devices				Index			Str-	Co	onsta	nt
-and							Devices									ointe	ər	ing	Rea	l num	nber	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Η	Е
[D.]									•	•	•	•	•	•		\bullet						

	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z
Operands:			←			[D.]			\longrightarrow

• On every execution of the instruction, the device specified as the destination [D.] and its current value increased 1.

♦ In 16 bit operation, when +32,767 is reached, the next execution will write a value of -32,768 to destination device.

In 32 bit operation, when +2,147,483,647 is reached, the next execution will write -2,147,483,648 to destination device.

• The carry, zero and borrow flag are unaffected in the operation.

Decrement

	FNC(25)		16 bits: DEC & DEC(P) 3 Steps		J2n	J3n
D	DEC	Р	32 bits: (D)DEC & (D)DEC(P) 5 Steps			

Oper			B	it De	wice)c		BitCombineToWord					ord [Dovic	201	l	nde	x	Str-	C	onsta	nt
-and							Devices					Word Devices				ointe	er	ing	Rea	ıl num	nber	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]									•	•	•	•		•		\bullet						

	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z
Operands:			←			[D.]			\longrightarrow

- On every execution of the instruction, the device specified as the destination [D.] and its current value decreased 1.
- In 16 bit operation, when -32,768 is reached, the next execution will write a value of +32,767 to destination device.
- In 32 bit operation, when -2,147,483,648 is reached, the next execution will write +2,147,483,647 to destination device.
- The carry, zero and borrow flag are unaffected in the operation.

Logical AND

	FNC(26)		16 bits: WAND & WAND(P) 7 Steps		J2n	J3n
D	WAND	Ρ	32 bits: (D)WAND &(D)WAND(P) 13 Steps			

Logical OR

	FNC(27)		16 bits: WOR & WOR(P) 7 Steps		J2n	J3n
D	WOR	Ρ	32 bits: (D)WOR & (D)WOR(P) 13 Steps			

Logical XOR

FNC(28)	16 bi	its: WXC	DR & W2	XOR(P)		 7	' Steps		J2n	J3n
D WXC	DR P	32 bi	its: (D)V	XOR &	(D)WXC)R(P)	 13	Steps			
Operands:	←			[S1.][S2	2.]		── >			
	K.H.	KnX	KnY	KnM	KnS	Т	V,Z				
			<			[D.]	\longrightarrow				

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	es	Index Pointer			Str- ing		onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnX KnY KnM KnS 1				T C D R			V	Ζ	Р		Κ	Н	Е
[S1.]								•	•	•	•	۲	•	•		۲				٠		
[S2.]								•	•	•	•	•	\bullet	•		•	•			•	•	
[D.]									•	•	•	•		•		•	•					

X0		[S1.]	[S2.]	[D.]								
	WAND	D10	D12	D14								
(D10) ∧ (D12) → (D14), 1∧1=1, 1∧ 0=0, 0∧1=0,												

X0		[S1.]	[S2.]	[D.]								
<u>├</u>	WOR	D10	D10 D12									
(D10) V (D12) → (D14), 1V1=1, 1V 0=1, 0V1=1,												

X0		[S1.]	[S2.]	[D.]							
	WXOR	D10	D12	D14							
(D10) V (D12) → (D14),1V1=0,1V 0=1,0V1=1,0V 0=0.											

Negation

	FNC(29)		16 bits: NEG & NEG(P) 3 Steps		J2n	J3n
D	NEG	Ρ	32 bits: (D)NEG & (D)NEG(P) 5 Steps			

	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z
Operands:			←			[D.]			\longrightarrow

Oper -and	Bit Devices						BitCombineToWord Devices			Word Devices				Index Pointer			Str- ing	Constar Real num				
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]									•	•	•	•	ullet	•		\bullet	•					

X0		[D.]
	NEG	D10
I	/(D10)+1 → (D10)

- When X0 ON, the selected device [D.] is inverted. ("1"→"0", "0"→"1")
- When this is complete, a further binary 1 is added to the bit pattern. The result is become a negative number or a negative number will become a positive.

< Example >> Absolute Value of Negative

M8000				
	BON	D10	MO	K15
MO				
	NEG P	D10		

<< Note of Negation >>

(D 10)=2

0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
(D 10)=1															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
(D	10))=0													

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(D 10)= -1	(<u>D 10</u>)+1=1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	> 0 0 0 0 0 0 0 0 0 0 0 1
(D 10)= -2	(<u>D 10</u>)+1=2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 1 0
(D 10)= -32,765	(<u>D 10</u>)+1= 32,765
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 0 1
(D 10)= -32,766	(<u>D 10</u>)+1= 32,766
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	> 0 1
(D 10)= -32,767	(D 10)+1= 32,767
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -	> 0 1
(D 10)= -32,768	(<u>D 10</u>)+1= -32,768
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0

LSB

0 0

LSB

0 0

M8022

0 0 0 0

Rotation Right

	FNC(30)		16 bits: ROR & ROR(P) 5 Steps		J2n	J3n
D	ROR	Ρ	32 bits: (D)ROR & (D)ROR(P) 9 Steps			

16bit : n ≤ 16

32bit : $n \le 32$

Oper -and			В	it De	evice	es		BitCombineToWord Devices				Word Devices				Index Pointer			Str- ing	Constan Real numl		
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]										۲		•	٠	•								
[n.]																				•	•	

Flag: M8022

註: 16BIT 組成的元件 只能使用 K4 修飾(例:K4Y0 K4M0 K4S0) ٠

註: 32BIT 組成的元件 只能使用 K8 修飾(例:K8Y0 K8M0 K8S0) ۲

Rotation Left

	FNC(31)		16 bits: ROL & ROL(P)		J2n	J3n
D	ROL	Ρ	32 bits: (D)ROL & (D)ROL(P) 9 Steps			

16bit : n ≤ 16

32bit : $n \le 32$

Oper -and			В	it De	evice	es		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]									•	•	•	ullet	•	•		•	ullet					
[n.]																				•	•	

Flag:

• After rotation left, the MSB of specified devices is shifted into carry flag M8022.

◆ 註: 16BIT 組成的元件 只能使用 K4 修飾(例:K4Y0 K4M0 K4S0)

◆ 註: 32BIT 組成的元件 只能使用 K8 修飾(例:K8Y0 K8M0 K8S0)

◆ 註: 32BIT 組成的元件 只能使用 K8 修飾(例:K8Y0 K8M0 K8S0)

Rotation Right with Carry

	FNC(32)		16 bits: RCR & RCR(P) 5 Steps		J2n	J3n
D	RCR	Р	32 bits: (D)RCR & (D)RCR(P) 9 Steps			

Oper -and			В	it De	evice	es		Bit		neToWo vices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta I num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Η	Е
[D.]									•	•	•	٠	•	•		•	•					
[n.]																				•	•	

Flag:

Rotation Left with Carry

	FNC(33)		16 bits: RCL & RCL(P) 5 Steps		J2n	J3n
D	RCL	Ρ	32 bits: (D)RCL & (D)RCL(P) 9 Steps			

16bit : n ≤ 16

32bit : $n \leq 32$

Oper -and			В	it De	evice	es		Bit		neToWo rices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]									•	•	•	ullet	\bullet	•		lacksquare	•					
[n.]																				•	•	

Flag:

16bit X0 [D.] [n.] RCL P D0 K4 ┥┝ MSB D0 LSB 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 → M8022 Л When M8022 = 0, after 4 rotation then M8022 = 1MSB LSB 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1

◆ 註: 16BIT 組成的元件 只能使用 K4 修飾(例:K4Y0 K4M0 K4S0)

◆ 註: 32BIT 組成的元件 只能使用 K8 修飾(例:K8Y0 K8M0 K8S0)

32bit																													
X0					[D.]			[n.]																					
	[DRC	CLP		D0			K4																					
MSB													D	0														L	SB
1 1 1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	\rightarrow	M8()22	ļ																									
When M8	3022	= 0,	afte	er 4	rota	atio	n the	en N	/802	22 =	= 1			Ţ	Ţ														
MSB															-													LS	B
1 1 1	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1
<u>م جب</u> ۸		~ 니	D-44-	- //			ĿП	12.4	147 A4	-//7-1				41.40		400	2)												

◆ 註: 16BIT 組成的元件 只能使用 K4 修飾(例:K4Y0 K4M0 K4S0)

◆ 註: 32BIT 組成的元件 只能使用 K8 修飾(例:K8Y0 K8M0 K8S0)

Shift Right

FN	IC(34)		16 bits: SFTR & SFTR(P) 9 steps		J2n	J3n
SI	FTR	Ρ				

Shift Left

FNC(35)	16 bits: SFTL & SFTL(P)			9	steps		J2n	J3n
SFTL P								
Operands:		←───	[:	s.] ——				
K.H.		Х	Y	М	S			
← ⁿ →	$n2 \le n1 \le 256$		<	— [D.] —	\rightarrow			

Oper -and			Bi	t De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing		onsta I num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]				۲																		
[D.]		•	٠	•																		
[n.]																				\bullet		

	110														•
15	14	13	12	11	10	M9	M8	M7	M6	M5	M4	М3	M2	M1	M0
۸	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノヘ	ノ

Example I/O Test: Wiring X10 ↔Y10 ... X17 ↔Y17

M8002									
			SET	Y17					
M8013	T10								
┝─┤┝──	_//	SF	TRP	X10	Ύ	10	K8	K1	
X10	X11	X12	X13	X14	X15	X16	X17		
	_//	—//—	_//_	//	_//	_//_	//	 T10	K5
T10									

Word Shift Right

FNC(36)		16 bits: WSFR & WSFR(P) 9 steps		J2n	J3n
WSFR	Ρ				

Word Shift Left

FNC((37)	16 bi	its: WSF	L & WS	FL(P) -			9	steps		J2n	J3n
WS	FL P											
Operands:		←			[S.]			\longrightarrow				
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	← n →		←		[D).]——		\longrightarrow				

 $n2 \le n1 \le 256$

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devio	ces		nde: ointe		Str- ing	Co Real num		nt
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•		۲	•								
[D.]									•	•	•		۲	•								
[n.]																				•	•	

Shift Register Write

FNC((38)	16 k	oits: SFV	/R & SF	WR(P) -				7 Steps		J2n	J3n
SFV	VR P											
Operands:	←───				[S.]				\longrightarrow			
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	← n →		<		— [D).] —			►			
	$2 \le n \le 2$	256										

Oper -and		Bit Devices						Bit		neToWo vices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta al nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•													
[D.]									٠	•	•			•								
[n.]																						

Flag:										
X10			[S.]		[D.]	n				
	SFWR	Ρ	D0		D1	K1	0			
I										
Source	_				n = 1	0 points	S			pointer
D0	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1
							^ 3		2 ↑ ()

- When X10 OFF → ON, content of D0 stored into D2 and D1="1". When next rising pulse, content of D0 stored into D3 and D1="2", the position of insertion into the stack is automatically calculated by controller.
- If content of [D.] exceeds the value "n-1" (n is length of the FIFO stack), then insertion into the FIFO stack is stopped. The carry flag M8022 is turned ON.
- Before starting to use a FIFO stack, ensure that contents of the head address register [D.] are equal to "0".

Shift Register Read

FNC	(39)		16 bi	ts: SFR	D &SFR	D(P)			7	Steps		J2n	J3n
SF	RD F)											
Operands:				←		[S	.]						
	K.H.	ł	≺nX	KnY	KnM	KnS	Т	С	D	V,Z			
	(← n →	▶		←			[D.]		-	>			
	2 ≤ n ≤	25	6										

Oper -and			Bi	t De	evice	s		Bit		neToWo vices	ord	W	ord [Devid	ces		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]									•	•	•											
[D.]									٠	•		٠		•		۲						
[n.]																						

F	nel	•
	iay	•

X10		[S.]	[D.]	n
	SFRD P	D1	D20	K10

									pointer	-	
D10	D9	D8	D7	D6	D5	D4	D3	D2	D1		D20
``	$\mathbf{\mathcal{A}}$		$\mathbf{\gamma}$	$\mathbf{\mathcal{F}}$	$\overline{}$		ゝヽ	$^{\bot}$		-	

- When X10 OFF → ON, content of D2 stored into D20 and content of D1 decreased 1 (D1=D1-1).
- When contents of source device [S.] are equal to "0", i.e. the FIFO stack is empty, zero flag M8020 is turned on.
- This instruction will always read the source data from the register [S.]+1.
- ex:BIT component of WORD Can only be modified with K4 (ex:K4Y0 K4M0 K4S0)
- [D.] Must not be negative Otherwise appears Error
- [D.] The number cannot be greater than n Otherwise appears Error

Zone Reset

	FNC(40)		16 bi	ts: ZRS	T(P) ·				{	5 steps		J2n	J3n
	ZRS	Τ	Ρ											
Opera	ands:							←	[D1.][D2	.] →				
		K.H	۲.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
Opera	ands:		•	← [I	D1.] [D2.]] →					<u> </u>			
		Х	r L	Y	М	S								

Oper -and	Bit Devices							BitCombineToWord Devices				Word Devices				Index Pointer			Str- ing	Constant Real number		
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D1.]		٠	۲	•								•	•	•								
[D2.]				•																		

Flag:

• The range of specified devices are reset, for data devices, the current value is set to "0", and for bit elements, the bit status are turned OFF.

• The specified device range cannot contain mixed devices types, i.e. if C00 specified as the first destination devices [D1.], then cannot paired with T99 as the second devices.

♦ If [D1.] is bigger than (>) [D2.], then only [D1.] is reset.

Decode

	VC(4			1	6 bi	ts: D	ECO(P	P) 7 steps												J2n	J:	3n
DECO P																						
Operands: ← [S.] _ →																						
X Y M S K.H T C D V,Z												Ζ										
$ \underbrace{[D.]}_{n=1-8} \underbrace{[D.]}_{n=1-8} $																						
Oper														Index			Str-	Constant				
-and	Bit Devices								Devices				Word Devices				oint		ing	Real number		
Туре	Х	Υ	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		K	Η	Е
[S.]														•								
[D.]														•								
[n.]																						
n= 1- 8	n= 1- 8																					
X10	X10 [S.] [D.] [n.]																					
					O X000			M10		K3												
		L																				
		X	(002	, x	001	x	000															
	X002 X001 X000																					
√	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					
0 M17	0 0 0 1 0 0 0 M17 M16 M15 M14 M13 M12 M11 M10																					

• If the specified device [D.] is T, C or D, then $n \le 4$.

♦ If the sources all are "0", then M10 set to "1".
LIICO	uc																					
FI	NC(4	42)		1	6 bit	ts: E	NCO(P	P)					'	7 ste	ps					J2n-	- J;	3n
E	ENC	0	Ρ																			
Operan	ds:	~ · ·			[S	.]		\rightarrow		<	[S	5.]			\rightarrow							
		Х	(Y		N	1 5	S I	K.H	Т	С		D	V,.	Ζ							
	-							←		<	— [[D.]			\rightarrow							
								n =	1 – 8													
Oper			Bi	t De	vice	s		Bi		ineToWo	ord	W	ord [Devid	es		nde		Str-		onsta	
-and Type	X	Y	М	S	т	С	Dn.b	KnX	KnY	vices KnM	KnS	т	С	D	R	V V	oint Z	er P	ing	Kea	al nun H	nber E
[S.]				•	1	U	011.0	NIX			T(1)O		•	•		•	•					
[D.]	-	-	_	-								•	•	•		•	•				•	
[n.]																						
n= 1-8																						
Flag:																						
X10						[S	.]	[D.]		[n.]												
		-	ENC	0		M	10	D10)	K3												
I																						
M17		Μ	116	ſ	M15		M14	M	13	M12	М	11		M10)							
0		C)		0		0		1	0		0		0								
7		6	6		5		4		3	2		1		0								
												\downarrow			J							
0 0)	0	0	0		0	0 0) 0	0	0 0	0	0		1	1							
MSB					•		•	D10		·	•		•	L	SB							

• If the specified device [S.] is T, C or D, then $n \le 4$.

Encode

• The number of active (ON) bits within the source device [S.] is more than one, only the lowest bit "1" is effective.

• If bits of source device [S.] all are "0", then error occurred.

Sum

	FNC(43)		16 bi	ts: SUN	1(P)				:	5 steps		J2n	J3n
D	SUN	N	Р	32 bi	ts: (D)S	UM(P) -				(9 steps			
Opera	ands:	←					[S.]				── →			
		K.H.		KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	-				←			[D.]						

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•	•	•	•		۲	•			\bullet	٠	
[D.]										•	•			•		•	lacksquare					

Flag:

	00 		SUM		[S.] D0		[D.] D2								
0	1	0	1	0	1	0	1	0	1	0	1	0	1	1	1
						D	0								
						Į	ŀ					8	4	2	1
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
						D	2								

• The number of active (ON) bits within the source device [S.], i.e. bits which have a value of "1" are counted. The count is stored in the destination device [D.].

• If there is no bit as 0, then zero flag M8020 ON.

Bit On Check

	FNC(4	14)	16	bits: BON	I(P)					7 steps		J2n	J3n
D	BON	N P	32	bits: (D)E	ON(P) -					13 steps			
Opera	ands:	←				[S.]				\longrightarrow			
		K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
		$\leftarrow \rightarrow$	- [n.] =	= 0~15 or	0~31								
Opera	ands:		←	– [D.]-	──→								
		Х	Y	М	S								

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devio	ces		nde: ointe		Str- ing		onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•	۲		•			۲			•	٠	
[D.]		٠	٠	•																		
[n.]																				\bullet	٠	

Flag:

X10		[S.]	[D.]	[n.]
	BON	D10	MO	K15

0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
				Bit1	5,D1(D=0, t	hen l	= 0N	OFF.						LSB

1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
				Bit1	5,D1(D=1, t	hen I	= 0N	ON						LSB

Mean

FNC(45)	16 bits:	MEAN(P)				7	7 steps		J2n	J3n
MEAN P										
Operands:			[S.]			>				
K.H.	KnX k	KnY KnM	KnS	Т	С	D	V,Z			
Operands: ← n →	←			[D.]			\rightarrow			

[n]=1-64

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devid	ces		nde: ointe		Str- ing		onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•	•	۲	•								
[D.]									•	•	•	٠	٠	•		•	•					
[n.]																				\bullet	\bullet	

Flag:

X10		[S.]	[D.]	[n.]
	MEAN	D0	D10	K3

◆ [(D0) + (D1) + (D2)] / 3 → (D10)

Annunciator Set

	FNC(46)	16 bits: ANS 7 steps		
	ANS			
-				

Reserved

Annunciator Reset

	FNC(47)	16 bits: ANR(P) 1 steps		
	ANR			
_				

Reserved

Square Root

	FNC(48)		16 bits: SQR(P)5 steps	J2n	J3n
D	SQR	Ρ	32 bits: (D)SQR(P) 9 steps		

Oper -and			Bi	it De	evice	s		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•						\bullet	\bullet	
[D.]														•								

Operands:	\longleftrightarrow	[S.]					[S.]	\longleftrightarrow							
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z						
Operands: [D.] ←→															
Flag: M802	Flag: M8020, M8021, M8022														
X000			[S.]		[D.]										
	;	SQR	D10	C	D12	V	D10→I	D12							

- [S.] must be positive. When it is negative, error flag M8067 ON, and stop executing.
- When the result with decimal fraction, don't care it; but borrow flag M8021 will ON.
- When result is 0, zero flag M8020 will ON.

Float

	FNC(49)	16 b	its: FLT((P)	 				- 5 steps		J2n	J3n
D	FLT	Р	32 b	its: (D)F	LT(P)	 		-9 steps					
Opera	ands:												
	ł	К.Н.	KnX	KnY	V,Z								
Opera	ands:							[D.]	←	→			

Oper -and		Bit Devices						Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing	_	onsta Il num	
Туре	Х	Υ	Μ	S	Τ	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•								
[D.]														•								

Flag: M8020, M8021, M8022

• FLT Instruction is converted command between BIN integer and binary floating data. Because constant K, H will automatically convert when floating data operate, then not fit this instruction

- When M8023 = ON, execute binary floating data → BIN integer ∘
 When M8023 = OFF, then execute BIN integer → binary floating data.
- ◆ Binary floating data → BIN integer, the operating result is decimal fraction, don't care it, but M8021 / M8022 will ON; when result is 0, M8020 will ON

Output & Input Refresh

	FNC(50)		16 bi	ts: REF	(P)				5	steps		J2n	J3n
	RE	F	Ρ											
Opera	ands:													
		K.H	Η.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	Ī	← n	→											

Operands:

Oper -and			Bi	it De	evice	s		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta I num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]		٠																				
[n.]																				•	٠	

[D.] should always be a multiple of 10, i.e. 00,10..

[n.] should always be a multiple of 8, i.e. 8,16,24..

 PLC input all refresh before program STEP 0 execute; output is executed after END or FEND instruction. It is not changed in performing process. If it needs immediately input data or output performing result in the performing process, then have to use output & input refresh instruction.

<< Input Fresh >> only X10 – X17 to be flashed

X00		[D.]	[n.]
	REF	X10	K8

<< Output Fresh >> refresh Y00-Y07, Y10-Y17, Y20-Y27.

X01		[D.]	[n.]
	REF	Y00	K24

• In interruption program, FNC(50) REF command can not be used.

Refresh and Filter Adjustment

	FNC(51)		16 bits: REFF(P) 3 steps		J2n	J3n
	REFF	Ρ				
Opera	and: [n.] =	0 - 6	0			

X10		
	REFF	K20

- To avoid noise interference, PLC input relay all designed with hardware RC filter to adjust software filter time.
- This instruction only change X00-X07 software filter time, i.e., content of D8020. If it has to change other input point filter time, please use MOV instruction.

Matrix

FNC((52)	16 bi	ts: MTR					9	Steps		J2n	J3n
MT	R											
Operands:												
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	(← n →											
Operands	← [S.]→	∢ [D1.]>										

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing		onsta Il num	
Туре	Х	K Y M S T C Dn ●				Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е	
[S.]	\bullet																					
[D1.]		۲																				
[D2.]		۲	٠	•																		
[n.]																				•	•	

Operand: (S.): X00, X10, X20, X30 - - - - - X160, X170. (D1.): Y00, Y10, Y20, Y30 - - - - Y160, Y170.

(D2.): Y, M, S multiple of 10, i.e. 00, 10, 20 etc.

(n.): K, H. n=2 ~ 8.

M8000		[S.]	[D1.]	[D2.]	[n.]
	MTR	X10	Y10	M20	K3
M8	029				

• MTR instruction allows 8 consecutive input devices [S.] to be used multiple (n) times. The result was stored in (D2.).

(S.): Head address of the input devices. (n.): row numbers.

(D1.): Head address of the output trigger devices.

(D2.): Head address of the matrix table.

• After completion of full reading of the matrix, the complete flag M8029 to be turned ON. This flag will be automatically reset when this instruction is executed.

• This instruction can be used once, and only the transistor module can be selected.

Set by High Speed Counter

Operands:

When [D.], can use Index to assign I010~I060 to interrupt.

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devio	es		nde: ointe		Str- ing		onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	•	•	•	۲	\bullet				•	•	
[S2.]																						
[D.]																						

Flag:

M8000	—(C253) K2, 1	47, 483, 6	647	
		[S1.]	[S2.]	[D.]
	D HSCS	K100	C253	Y000
	DHSCR	K200	C253	Y000

 When use FNC53, operate external output action by interrupt. When current value of C253 changed from 99 to 100 and from 101 to 100, Y000 will be set.
 When current value of C253 is changed from 199 to 200 and from 201 to 200, Y000 OFF.

• This command is specialized instruction of 32 bits, please input DHSCS command.

• Only can use FNC53, FNC54, FNC55 once.

♦[D.] of DHSCS can assign $I0 \Box 0 =$ (\Box =1~6)(\Box =1~6 can not be reuse.)

◆ Therefore, when current value of High Speed Counter which is assigned by [S2.] is as same as the value which is assigned by [S1.], interrupt main program and jump to execute I0 □ 0 interrupt program immediately.

♦ When Special auxiliary relay M8059
 ON, I010~I060 interrupt are all prohibited.

Reset by High Speed Counter

Operands:

Can assign [D.] and [S2.] are the same High Speed Counter.

Oper -and			Bi	t De	vice	s		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing		onsta al nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•		•	•	۲					۲				•	
[S2.]																						
[D.]		•	•	۲																		

Flag:

♦ When current value of C253 is 400, C253 will be cleared immediately. Current value will become 0, and output contact will not act.

• This command is specialized instruction of 32 bits, so have to use DHSCR.

Zone Compare For High Speed Counter

	FNC(55)				
D	HSZ	32 bits: HSZ17 Steps			
_					

Reserved

Speed Detect

FNC(56)	16 bits: SPD 7 Steps		J2n	J3n
SPD				

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devio	es		nde: ointe		Str- ing		onsta I num	
Туре	Х					Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Η	Е	
[S2.]								•	•	•	•	•	•	•								
[D.]												•	•	•								

Operands: (S1.): X000~X005. When C251 is used, X02 and X03 can not be used.

Operands:	←				[S2.]				→
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z
Flag:M8029	9					←	[D	.]——	── >
			[S1.]	[S2	.]	[D.]			
	SP	D	X00	K1(00	D00			

- The input pulse assigned by [S1.], and the [S2.] assign measurement time, the result will be stored at [D.].
- This will automatic occupy 3 word devices from the head address of [D.]. (D00~D02)
- This example D01 count up the pulse number of X00 (OFF→ON), and put the result into D00 at 100msec after. Then reset D01to "0" and start counting again.
- D02 is used to measurement remainder time.
- The counting pulse amount of the assign time can't be more than 65535
- Following formula can calculated RPM
 - $\mathsf{RPM}: \mathsf{N} = (\mathsf{D00} \times 60) \times 1000 / \mathsf{n} \times \mathsf{t}$
- n: (pulse/revolution), t: (measurement time).
- The pulse frequency of (X00-X05) is same with HSC.
- ◆ If input relay (X00-X05) is assigned by the SPD, they can't be used to other purpose or interrupt input point.
- If pulse output assign Y00, then X00 can't be used; if assign Y01, then X01 can't be used.
- V1.45 or more, add complete flag M8029, easily reach many data of continuous measurement, then count an average value.

(i) measure frequency mode

(ii) measure pulse width mode

- ◆ The content of [S2.]="0" only one pulse width then can measurement speed N pps(pulse/second) ∘
- ◆ This example speed N store at D01,D00 ·

Pulse Output

											-		
	FNC(57)										J2n	J3n
D	PLS	Y	32 bi	its: (D)P	LSY				1;	3 steps			
Opera	ands:	<				-[S1.]-				>			
		K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
		[D.] : Y	00 – Y03						 ∈ [S2.] >				

Oper -and			Bi	t De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	ces	Index Pointer			Str- ing		onsta Il num	
Туре	Х	X Y M S T C Dn.b					Dn.b						С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•		•	•	•	•	•	•	•	•			•	•	
[S2.]														•								
[D.]																						

Flag: M8029

X10		[S1.]	[S2.]	[D.]	number of pulse (D1000)
	DPLSY	K1000	D00	Y00	
I		Speed	Position		Y000 L L L L L

- This instruction is pulse output without slope.
- [D.] assign pulse output point

[S1.] assign output frequency (10~200,000Hz).

[S2.] it will occupy continuous 100 words from assigned [S2.]. In this example, it occupies D1000~D1099.

- [S2.]+1, [S2.]+0 : number of output pulses [S2.]+3, [S2.]+2 : system reserved
- [S2.]+5, [S2.]+4 : start address [S2.]+7, [S2.]+6 : absolute address(for monitor)

[S2.]+9, [S2.]+8 : increment address(for monitor)

- ◆ DPLSY is used to output a consecutive pulse. 32 bits range: 1 ~ 2,147,483,647 pulses.
- ◆ If [S2.]+1, [S2.]+0 are assigned to "0", it will continue to generate pulse.
- It is fixed to 32 bits operation. If it is assigned to 16 bits operation, then error 6509 will be occurred.
- The pulse duty cycle is 50% ON 50% OFF.
- Value of [S2.]+1, [S2.]+0 can be changed during execution, but the new will not be effective until current operation has been completed, and complete flag M8029 set to ON.
- This instruction can be used once, and only the transistor module can be selected.

Pulse Width Modulation

FNC	(58)	16 b	its: PWN	/I I					7 steps		J2n	J3n
PW	/M											
Operands:	←───			— [S	51.][S2.] —			\longrightarrow			
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
		a) (a=										

[D.] : Y00 – Y07

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	eToWord ces		ord [Devio	ces	Pointer			Str- ing		onsta Il nun	
Туре	Х	X Y M S T C Dn.b					Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	•	•	•	•	•	•			•	•	
[S2.]								•	•	•	•	٠	•	•	٠	•	•			•	•	
[D.]																						

Flag: None

◆ [S1.]: ON duty width (t). Y00 - Y01 range (0 - 32,767) x 0.01ms; Y02 - Y07 range: (0 - 32,767 msec)

◆ [S2.]: (T). Y00 - Y01 range (0 - 32,767) x 0.01ms ; Y02 - Y07 range: (0 - 32,767 msec)

• [D.]: Output point (Y). (by interrupt handing)

• If value of [S1.] is more than value of [S2.], then error occurred.

• This instruction is applicable for transistor module.

PULSE OUTPUT WITH SLOPE

	FNC(59)										J2n	J3n
D	PLS	R	32 bi	ts: (D)P	LSR				1	7 steps			
Opera	ands:	←				[S1.]	,			>			
		K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
		[D.] : Y0	0 – Y03						\longleftrightarrow	[S2.][S3	8.]		

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devio	ces	Index Pointer			Str- ing		onsta Il num	
Туре	Х	K Y M S T C Dn.b					Dn.b	KnX	KnY	KnM	KnS	Т	TCDR			V	Ζ	Ρ		Κ	Н	Е
[S1.]								$\bullet \bullet \bullet \bullet$						•	•	•	٠					
[S2.]														\bullet								
[S3.]																						

Flag: M8029

X10		[S1.]	[S2.]	[S3.]	[D.]
	DPLSR	D00	D02	D1000	Y00

◆ [D.] assign pulse output point. Assign to Y04=pseudo axis (no real pulse output)

[S1.] assign output frequency.(10 ~ 200,000pps)

[S2.] assign number of output pulse. It will occupy continuous 8 words start from assigned [S2.]. In this example, it occupies D02~D09

- [S3.] It will occupy continuous 100 words start from assigned [S3.]. In this example, it occupies D1000~D1099.
- [S3.]+0 : motion mode: command value 0~99 as well as G00~G99

Command value	Content
00	Single position motion
01	Linear interpolation (J2nB only) n=2,4
02	Circular interpolation CW (J2nB only) n=2,4
03	Circular interpolation CCW (J2nB only) n=2,4
04	Cam movement
05	Interval movement
06	Ratio command(electronic gear must be fraction. numerator< denominator)
07	RotaryCut
08	FlySaw
09	Reserve
28	Zero Return

[S3.]+1 : motion direction control point: Y02~Y07

b7	b6	b5	b4	b3	b2	b1	b0	
								 Assign motion direction output point (Y)
								System reserved

[S3.]+2 : parameter setting

b7 b6 b5 b4 b3 b2 b1 b0

	0: increment address control 1:absolute address control
	Without slope stop flag (moving is effective)
	NoTargetFlag(G00,G06) Continuous moving flag(G01,G02,G03)
	Without slope Run Flag
	Change status of direction control point =0:ON up count, OFF down count; =1:ON down count, OFF up count (Ratio command mode is ineffective)
	System reserved

b15	b14	b13	b12	b11	b10	b9	b8	
								Mark sensor application (write real time pulse address to [S3.]+40 System reserved System reserved System reserved 000:Follow signal of X0,X1 AB phase 001:Follow signal of X3,X4 AB p
								010:Follow signal of X2,X5 AB phase 011:Follow signal of X6,X7 AB pl 100: Follow signal of pseudo axis pulse 101111: system reserved It is fixed as 1. Ratio command mode

- [S3.]+3 : system reserved
- [S3.]+5, [S3.]+4 : start address(for monitor)
- [S3.]+9, [S3.]+8 : increment address(for monitor)

b2 b1

b0

- [S3.]+13, [S3.]+12 : target address(for monitor)
- [S3.]+17, [S3.]+16 : maximum speed
- [S3.]+20 : bias speed(pps)
- [S3.]+22 : acceleration time(ms)

b4 b3

[S3.]+24 : DOG point signal

b6 b5

b7

[S3.]+11, [S3.]+10 : the rest of pulses(for monitor)[S3.]+15, [S3.]+14 : current speed(for monitor)[S3.]+19, [S3.]+18 : system reserved

[S3.]+7, [S3.]+6 : absolute address(for monitor)

- [S3.]+21 : system reserved
- [S3.]+23 : deceleration time (ms)

	 DOG point signal X0~X7(can not be repeated to zero point)
	 System reserved
	 Zero point signal X0~X7(can not be repeated to DOG point)

- [S3.]+25 : zero-point signal setting value. If there is not zero-point signal (for stepping motor) when it turns to zero-point, then user would set number of search zero-point as "0".
- [S3.]+26 : zero-point signal count value (for monitor)
- [S3.]+27 : system reserved
- [S3.]+28 : electronic gear(numerator)
- [S3.]+29 : electronic gear(denominator)
- [S3.]+30 : system reserved
- [S3.]+32 : system reserved
- [S3.]+41, [S3.]+40 : PLSR-G00 mark sensor real time address buffer.[S3.]+41, [S3.]+40 : PLSV number of output pulses. If value is 0, it is as without target operation.
- MultiAxis moving : drive on the pseudo axis first, set the other axis to G06 ratio follow mode and assign to signal of pseudo axis pulse.
- When this instruction is used, increment distance or absolute address has to be converted to pulses, then stored to [S2.].
- When pulse output, X10 OFF, pulse is stopped outputting according to setting status of stop flag [S3]+2,b1.

• The pulse duty cycle is 50% ON, 50% OFF

- During G06 with slope with target instruction is under operation, it is ineffective to change content of [S2.]
- This instruction for Y00 or Y01 only can be used once (total twice), and has to select transistor output type.
- It is fixed to 32 bits operation. If user assigns 16 bits operation mode, then error 6509 will be occurred.

• There is only one kind of pulse output type in this instruction (Negative Logic Type, Pulse & Sign) can be controlled step or servo motor.

Pulse

sign

% Command code 00 [G00] Mark SensorOnChangeSpeedChangePosition

X Command 06 [G06] Ratio command (direction of Y0 axis is fixed as Y2; direction of Y1 is

MultiAxis Moving (Virtual axis bit2,D5002=1 is no target position control), Real axis need drive first

	M8002						
		ZRST	D0	D49]		
		CALL	P10]			
			FIU				
		CALL	P14]			
	M500	*RealAxis(Y	V2) pood dr	ivo firot			
			D0	D2	D1000	Y000	D0=0:WithoutSlope, D2=0:WithoutTarget
					I		
	M501		1		1		
	 ↑	DMOV	K500	D10			
			K16000	D12	1		
			1				
	M501		1	r	1	1	1
		DPLSR	D10	D12	D2000	Y001	D10!=0:WithSlope, D12!=0:WithTarget
	M502	DPLSR	D20	D22	D3000	Y002	WithoutSlope WithoutTarget
	M503						
		DPLSR	D30	D32	D4000	Y003	WithoutSlope WithoutTarget
	MEOA						
	M504	DPLSR	D40	D42	D5000	Y004	* Assign Y4 is pseudo axis
		M8029	2.0		20000		
		L	RST	M504]		
		FEND	1				
	* Cor	FEND] follow_source	signal assig	n to Y4 dear	ratio10/10=1	
P10	M800			olginal accig			
		MOV	K6	D1000]		
				D 4 4 4 4	1		
		MOV	H0C00C	D1002	* H0C00C	: ratio to pse	eudo axis, WithoutSlope WithoutTarget
		MOV	K10	D1028]		
					J -		
		MOV	K10	D1029			
P11	* Cor M8000	mmand G06 ratio	follow, source	e signal assig	n to Y4,gear	ratio 100/200)=1/2
		MOV	K6	D2000]		
			-		_		
		MOV	H0C000	D2002	* H0C000	: ratio to pseu	udo axis, WithSlope WithTarget
		MOV	K100	D2028	1		
			N100	02020	J		
		MOV	K200	D2029]		

X Command value 28 [G28] Zero return (number of search for Z phase is not as 0)

* Command value 28 [G28] Zero return

(number of search for Z phase is 0. DOG point signal and Zero point signal have to be set as the same point) When using the same mode of near point and zero point, regardless of the number of Z phases Mode 0: Leaving the range of the near point and looking for the origin in the reverse direction Mode 1: Regardless of whether it leaves the near point or not, it immediately reverses to find the origin when it drops to the initial velocity

When using the near point and zero point not the same mode

Mode 0: Search for Z phase in the same direction of rotation. The action will be completed when the set number of times (D1025) is reached.

Mode 1: Search for Z phase in the opposite direction of rotation. The action will be completed when the set number of times (D1025) is reached.

Near point zero is not the same mode

Near zero point same mode

<< MODE0 >> First confirm DOG point and then decrement speed to Bias speed and need leave DOG effective range, reverse rotation and start searching ZERO point signal

D1024 = H0133 (DOG point signal X3 rising edge effective , Zero-point signal X3 falling edge effective , Initial

operation direction as reserve direction)

D1025 = K0 (number of Z phase = 0)

<< MODE1 >> First confirm DOG point and then decrement speed to Bias speed and don't need leave DOG effective range, reverse rotation and start searching ZERO point signal

D1024 = H0133 (DOG point signal X3 rising edge effective , Zero-point signal X3 falling edge effective , Initial operation direction as forward direction)

D1025 = K0 (number of Z phase = 0)

※ Sample program of DPLSR : JOG +/-

※ Sample program of DPLSR : JOG +/- (No Rollover problem)

Initial State

FNC(60)	16 bits: IST7 steps		
IST			

Reserved

Data Search

	FNC(61)		16 bits: SER(P)9 steps			
D	SER	Ρ	32 bits: (D)SER(P) 17 steps			

Reserved

Absolute Drum Sequence

FNC(62) 16 bits: ABSD J1n J2n- J3n D ABSD 32 bits: (D)ABSD
Operands: \leftarrow [S1.] \rightarrow K.H. KnX KnY KnM KnS T C D V,Z \leftarrow n \Rightarrow n \leq 64 \leftarrow \leftarrow [S2.] Operands: Operands: X Y M S \leftarrow [D.] \rightarrow \bullet \bullet Index Str- Constant Operands: V Y M S \leftarrow \bullet
K.H. KnX KnY KnM KnS T C D V,Z $(\leftarrow n \rightarrow)$ $n \le 64$ $(\leftarrow \rightarrow)$ [S2.] Operands: X Y M S $(\leftarrow \rightarrow)$ [S2.] Index Str- Constant Oper Bit Devices BitCombine ToWord Word Devices Index Str- Constant Type X Y M S C D.l KnX KnY KnM KnS T C D V,Z Image: Stress of the strestress of the strestress of the strestrest
K.H. KnX KnY KnM KnS T C D V,Z $(\leftarrow n \rightarrow) n \le 64$ $(\leftarrow \rightarrow)[S2.]$ Operands: X Y M S $(\leftarrow -)[D.]$ (\Box) (\Box) (\Box) (\Box) (\Box) Oper Bit Devices Bit Combine ToWord Word Devices Index Str- Constant Type X Y M S T C D. KnX KnY KnM KnS T C D. Real number Type X Y M S T C D. KnX KnY KnM KnS T C D K H I [S1.] I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Operands: X Y M S Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Constant Oper Bit Devices BitCombineToWord Word Devices Index Str- real number Constant Type X Y M S T C Dn.b KnX KnY KnM KnS T C D K H Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Constant Type X Y M S T C D R V Z P K H Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Constant Type X Y M S T C D R V Z P K H Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan= 2 [S1.] Image: Colspan="2">Image: Colspan= 2 Image: Colspan= 2 Image: Colspan="2">Image: Colspan= 2 [S2.] Image: Colspan= 2 Image: Colspan=
X Y M S (
Oper Bit Devices BitCombineToWord Word Devices Index Str- Constant -and Bit Devices BitCombineToWord Word Devices Index Str- Constant Type X Y M S T C Dn.b KnX KnY KnM KnS T C D R V Z P K H R [S1.] I <t< td=""></t<>
Oper -and Type Bit Devices BitCombineToWord Devices Word Devices Index Pointer Str- ing Constant Real number Type X Y M S T C Dn.b KnX KnY KnM KnS T C D R V Z P K H R [S1.] Image: String and the stri
Bit Devices Devices Word Devices Pointer ing Real number Type X Y M S T C Dn.b KnX KnY KnM KnS T C D R V Z P K H R [S1.] Image: State of the
Type X Y M S T C Dn.b KnX KnY KnM KnS T C D R V Z P K H If [S1.] Image: Second structure
[S1.] •
[S2.] •
[D.] •
[n.] Image: Second structure X000 [S1.] [S2.] [D.] n This instruction is used to bring a varied output type
X000 [S1.] [S2.] [D.] n
This instruction is used to bring a varied output type
This instruction is used to bring a varied output type
ABSD D300 C 0 M 0 K 4 counter. It can detect the angle of the circle control action
C0 X001
X001 • Left example is used to control ON/OFF status of Auxiliary
Relay M0~M3 when rotation table rotate within a circle.
Rotation angle signal (1angle/pulse)

◆ Using MOVE instruction to write following values into D300~D307

ON setting value	OFF setting value	Output point	Put
D300= 40	D301= 140	MO	num
D302= 100	D303= 200	M1	Turn
D304= 160	D305= 60	M2	num
D306= 240	D307= 280	M3	

Put Turn ON value to even number of D device, and put Turn OFF value to Odd number of D device

♦When X0 ON, change of M0~M3 is mentioned as follows. Turn ON and Turn OFF value can re-change to write into D300~D307

- Output point number is decided by setting value of [D.]
- ♦ When X0 become OFF, output is not changed.

♦ ABSD instruction just can be used once in one program.

♦ When assign High Speed Counter in [S.], then also can use (D)ABSD instruction.

For current value of counter at this time, the output status will delay because of scan-time, recommend to use Table high-speed compare mode of HSZ instruction.

Incremental Drum Sequence

Oper -and	Bit Devices							BitCombineToWord Devices				Word Devices			Index Pointer			Str- Consta ing Real nur				
Туре	Х	Υ	М	S	Τ	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	•	۲	•								
[S2.]													۲									
[D.]		٠	•	•																		
[n.]																				•	•	

This instruction is used to produce a varied output when using a couple of counter.

Following is the control range of 4 points (M0~M3)

♦ Use MOVE instruction to write following value into [S1.] in advance.

D300 = 20 D302 = 10 D301 = 30 D303 = 40

- When counting value of C0 reach to setting value of D300~D303, C0 reset automatically in turn
- ♦C1 count occurred number of C0 reset.
- ♦ M0~M3 act in turn according to counting value of C1.
- After complete last operation of setting number by "n", flag M8029 become ON. Above mentioned action will be always repeated.
- When X0 OFF, C0 and C1 is cleared, M0~M3 become OFF, then operate again when X0 become ON.
- ◆INCD instruction only can be used once in one program.

Teaching Timer

FNC(64)	16 bits: TTMR 5 steps		
TTMR			

Reserved

Special Timer

	FNC(65)	16 bits: STMR7 steps		
	STMR			
-	_			

Reserved

Alternate Output

FNC	(66)	16 b	its: ALT(P)	3 steps	J1n	J2n	J3n
AL	ΤP							
Operands:		←	– [D.] -	>				
	Х	Y	М	S				

Oper -and	Bit Devices							BitCombineToWord Devices				Word Devices			Index Pointer			Str- ing	Constant Real number			
Туре	X	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Η	Е
[D.]		•	•	٠																		

Flag:

Ramp

FNC(6	67)	16 bits: R	AMP		J1n	J2n	J3n		
RAM	Р								
Operands: [S1.][S2.]	[[D.] : D							
		n: 🛛 K, H	n = 1 t	o 32,767					
Flag: M8029)								
X00		[S1.]	[S2.]	[D.]	n				
	RAMP	D 1	D 2	D 3	K1000				

When X0 ON, content of [S1.] and [S2.] are stored into [D.]. Content of [D.] is increased by "1" each scan cycle.
 n: the number of scan cycle.

♦ After M8029 is driven, write once scan-time value (longer than actual scan-time) into M8039, and then PLC will enter to fixed scan mode.

For example, n = K1000 in above example. If scan cycle is set to 20msec, then value in D3 will be changed from setting value of D1 to setting value of D2 within 20sec.

- If X0 become OFF when acting, then act of RAMP signal will stop in midway. If X0 ON again, then D4 will be cleared and D3 will restart by setting value of D1.
- After end of execution, flag M8029 act, and then value of D3 will return to value of D1.
- Control of start / end point can be executed by RAMP instruction and analog output.
- Enter into RUN status when X0 ON.

Rotary Control

FNC(68)	16 bits: ROTC 9 steps		
ROTC			

Reserved

Sort

	oits: SORT 11 steps		
SORT			

Reserved

Tenkey Input

FN	IC(7	70)		16	6 bit	ts: T	KY						7	Step)S			J	l1n	J2n-	. J	3n
D 1	ΓKΥ	,		32	2 bit	ts: (E	D)TKY	(- 13	Ste	os							
Operand	s:				ŀ	←				[D1.]					\rightarrow							
		K.⊦	ł.	Kn	Х	Kn	Ył	КnМ	KnS	Т	С	[D	V,	Ζ							
Operand	ls:	←		_	[S.	.] •		\rightarrow														
		Х		Y		Μ		S														
	_		1																			
			∢	(—		[D2.] —	\rightarrow														
Oper -and			∙ Bi	t De	vice	-	.] —			ineToW vices	ord	W	ord [Devio	es		nde: ointe		Str- ing		onsta Il nur	ant nber
	X	Y	l Bi M	t De S	vice T	-	.] — Dn.b		De		ord KnS	W T	ord [C	Devic	es R							
-and	X	Y				es	_		De	vices		T	1	1			ointe	ər		Rea	l nur	nber
-and Type	-	-	М	S		es	_		De	vices		W T	1	1			ointe	ər		Rea	l nur	nber
-and Type [S.]	-	-	М	S		es	_		De KnY	vices KnM		W T	1	1		P	ointe Z	ər		Rea	l nur	nber

- This instruction can read 10 consecutive devices and will store an entered numeric string in [D1].
- In 16 bits operation, [D1] can store numbers from 0000 to 9999 (max. 4 digits). In 32 bits operation, [D1] value from 00000000 to 99999999 (max. 8 digits). In both cases, if the number exceeds the allowable ranges, the highest digit will overflow, and ignored it.
- When X20 OFF, all of the [D2.] devices are reset, but contents of [D1.] keep intact.

Hexadecimal Key

Πολά	uci	5111	a		<i>-</i> y																	
FN	NC(7	'1)		1	6 bit	ts: H	KY ·						9) Ste	ps			J	l1n	J2n-	- J	3n
DI	HKY	'		3	2 bit	ts: (D	D)HKY						- 17	7 Ste	ps							
Operand	ds:								•	(— [D2	2.]			\rightarrow							
		K.F	١.	Kn	Х	Kn	Y Kı	אר M	KnS	Т	С	[D	V,	Z							
Operand	ds:		•	←		[D3	.] ——	\rightarrow														
	Γ	Х		Y		Μ	5	3														
			1		.]≯		•															
		പ്ര.	יודוי	יטן>																		
		< [3.	. ~	יטי																		
Oper		< [3.				s		Bi		neToWo	ord	W	ord [Devid	es		ndex		Str-		onsta	
Oper -and		< [3.		t De	vice				Dev	vices	T	W		Devi			ointe	ər	Str- ing		al nur	nber
	X	Υ				es C	Dn.b	Bi KnX			ord KnS	W T	ord [C	Devic	ces R							
-and			Bi	t De	vice		Dn.b		Dev	vices	T	W T		-			ointe	ər		Rea	al nur	nber
-and Type	X		Bi	t De	vice		Dn.b		Dev	vices	T	W T		-			ointe	ər		Rea	al nur	nber
-and Type [S.]	X	Y	Bi	t De	vice		Dn.b		Dev	vices	T	W T		-			ointe	ər		Rea	al nur	nber
-and Type [S.] [D1.]	X	Y	Bi	t De	vice		Dn.b		Dev	vices	T	W T		-		V	ointe	ər		Rea	al nur	nber
-and Type [S.] [D1.] [D2.]	X	Y	Bi	t De	vice		Dn.b		Dev	vices	T	W T		-		V	ointe	ər		Rea	al nur	nber

- ♦ When the numeric key (0 ~ 9) be pressed, then causes bit device [D3.]+7 turn ON for the duration of key press.
- When the function key (A ~ F) be pressed, then causes bit device [D3.]+6 turn ON for the duration of key press.
- When the function key has been pressed, then will set bit devices [D3.]+0 to [D3.]+5 to ON, and remain ON until the next function key has been activated.

- In 16 bits operation, [D2.] can store numbers from 0000 to 9999 (max. 4 digits). In 32 bits operation, [D2.] value from 00000000 to 99999999 (max. 8 digits). In both cases, if the number exceeds the allowable ranges, the highest digit will overflow, and ignored it.
- When two or more keys were pressed, only the first key is effective. When X14 OFF, all [D3.] devices are reset, but contents of [D2.] keep intact.
- This instruction requires 8 scans cycle time to read the key input. After 8 scans, complete flag M8029 to be turned ON. This flag is automatically reset when this instruction execute.
- This may only be used once, and only the transistor module can be selected.

Digital Switch

FNC	(72)	16 b	its: DSV	/				9	Steps	J1n	J2n	J3n
DS	W											
Operands:	(← [n]→	=1~8				←	[D	92.] —				
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
Operands:	∢ [S.] ≯	≼ [D1.] ≽										
	Х	Y	М	S								

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing		onsta Il num	
Туре	Х	Υ	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]	lacksquare																					
[D1.]																						
[D2.]																	•					
[n.]																				•	•	

Flag:M8029

X00		[S.]	[D1.]	[D2.]	[n]
	DSW	X10	Y10	D0	K4

- This instruction used n (1~8) output points and 4 input points to read in n (1~8) thumbwheel switch. If the read data is larger than 32 bits (n≥5), then [D2.] automatically occupy the next word device.
- This example the BCD 4 digit thumbwheel switch (1,2,4,8) is connected to X10~X13 or X14~X17, the source [S.] needs to be used X10,X14,X20,X24....as the head address.
- Once DSW execute, then the flag M8029 reset to "0". When execution is completed, M8029 set to "1".
- Each pin (1,2,4,8) of the thumbwheel switch needs to be connected a diode (0.1A/50V)
- This may only be used once, and only the transistor module can be selected. If use M8029, then can control two or more DSW .

Seven Segment Decoder

F	NC	(73)			16 b	its:	SEGE	D(P) ·						5 st	eps				J1n	J2n	,	J3n
	SEC	GD	Ρ																			
Opera	nds:	←							[S.]						\rightarrow	•						
		K	.Н.	K	nΧ	K	'nΥ	KnM	KnS	Т	С		D	\	/,Z							
						←				[D.]					\rightarrow	•						
Oper -and			Bi	t De	vice	S		В		neToWo /ices	ord	W	ord [Devio	ces		nde: ointe		Str- ing	_	onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Η	Е
[S.]										•	•	•		●		•	۲				lacksquare	
[D.]									•	•	•			٠								

Flag:

SEGD D00 K2Y0	X00		[S.]	[D.]
		SEGD	D00	K2Y0

- ♦ A single hexadecimal digit (0~9, A~F) occupying the lower 4 bits of the source device [S.] is decoded to a data format used to drive a seven segment display.
- The decoded data is stored in the lower 8 bits of destination device [D.]. The upper 8 bits was unchanged.

(5	6.)					([).)				
Hex	Bit	Seven segment display	b7	b6	b5	b4	, b3	b2	b1	b0	data
0	0000		0	0	1	1	1	1	1	1	I]
1	0000		0	0	0	0	0	1	1	0	<u>'_'</u> I
2	0010		0	1	0	1	1	0	1	1	, , <u>-</u> '
3	0011		0	1	0	0	1	1	1	1	J
4	0100		0	1	1	0	0	1	1	0	
5	0101	b0	0	1	1	0	1	1	0	1	' <u>5</u> ,
6	0110	, ,	0	1	1	1	1	1	0	1	Ē
7	0111	b5 b6 b1	0	0	1	0	0	1	1	1	
8	1000	b4 _{b3} b2	0	1	1	1	1	1	1	1	Ē
9	1001		0	1	1	0	1	1	1	1	- Ē
A	1010		0	1	1	1	0	1	1	1	IFI
В	1011		0	1	1	1	1	1	0	0	<u>اح</u> ا
С	1100		0	0	1	1	1	0	0	1	Ι_
D	1101		0	1	0	1	1	1	1	0	<u> _</u>
E	1110		0	1	1	1	1	0	0	1	ΙĒ
F	1111		0		1	1	0	0	0	1	IF

Seven Segment With Latch

FNC(74)		16 bits: SEGL(P) 5 steps		
SEGL	Ρ			

Reserved

Arrow Switch

FNC(75) 16	6 bits: ARWS(P) 9 steps		
ARWS			

Reserved

Ascii Code Conversion

FNC(76)	16 bits: ASC 11 steps	J1n	J2n	J3n
ASC				

Operands: [S.]: 8 character or alphanumeric data.

Operands: <

____ [D.] _____ T | C | D

≯

Oper -and			В	it De	vice	s		Bit		neToWo rices	ord	W	Word Devices			-	nde: oint	-	Str- ing	Constant Real number		
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]																						

Flag:

X00		[S.]	[D.]
	ASC	ABCDEFGH	D100

• The source data string [S.] consists of up to 8 characters.

♦ The character "A"~"H" is converted to ASCII codes, then stored into D100~D103. When M8161 is OFF

M8161=OFF	Upper 8 bits	Lower 8 bits
D100	"B"	"A"
D101	"D"	"C"
D102	"F"	"E"
D103	"H"	"G"

When M8161 is ON

	Upper 8	Lower 8		Upper 8	Lower 8
D100	0	"A"	D104	0	"E"
D101	0	"B"	D105	0	"F"
D102	0	"C"	D106	0	"G"
D103	0	"D"	D107	0	"H"

Print

FN	C(77)	16 bits: PR 5 steps		
	PR			

Reserved

FROM

	۶I	NC(78)		16 b	its: FRC)M(P) - ·					9 steps	J1n	J2n	J3n
D	F	ROM	Ρ	32 b	its: (D)F	ROM(P)			1	7 steps			
Oper	an	ds:			←			[D.]						
		K	.Н.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			

Operands: $| \leftarrow \rightarrow |$ m1 = 0 ~ 7 no. of special module

m2.= 0 ~ 31 no. of buffer memory (BFM)

n.= 1 ~ 31 no. of read (when D, n=1~15)

Oper -and	Bit Devices			BitCombineToWord Devices			Word Devices			Index Pointer			Str- ing		Constant Real number							
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[m1.]														ullet	•					\bullet		
[m2.]														•						•	٠	
[D.]										•				•								
[n.]																						

Flag:

• When X00 ON, the buffer memory of special module BFM#29 to be read and stored into M00~M15.

<< Special Device Module Number m1>>

CPU	I/O	module n	0.0	I/O
X00~X07 Y00~Y07	X10~X17 Y10~Y17			X20~X27 Y20~Y27
		K = 0		

• The BFM is the memory address of special module.

• The number of special module is address to NO.0~NO.7 and beginning with the one closest to the CPU unit.

• The special module can up to 8 maximum, and no occupy I/O points.

ТО

	FNC(7	79)	16 b	6 bits: TO(P) 9 steps								J1n	J2n	J3n
D	ТО	P	32 b	32 bits: (D)TO(P) 17 ste										
Opera	Operands: <													
		K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z				

Operands: $| \leftarrow \rightarrow | m1 = 0 \sim 7$ no. of special module

m2.= 0 ~ 31 no. of buffer memory (BFM)

n.= 1 ~ 31 no. of write (when D, n=1~15)

Oper -and	Bit Devices			BitCombineToWord Devices			Word Devices			Index Pointer			Str- ing		Constant Real numbe							
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[m1.]														•						\bullet	•	
[m2.]														•	٠					•	٠	
[S.]										•				•	•							
[n.]														•	•					٠		

Flag:

• When X00 ON, the content of D0 to be write into the buffer memory BFM#12 of the special module NO.1

• If used pulse command can decrement cycle time.

<< Number of Read n >>

Communication

	FNC(80) 16 bits: RS									9 steps								J1n	J2n		J3n	
	R	S																				
Opera	nds:											←	S, –	▶								
		K	.H.	K	nΧ	K	'nΥ	KnM	KnS	Т	С		D	\	/,Z							
		←	\rightarrow	m	,n=1	l~12	28					←	D	> m	,n							
Oper -and	· · · ·			В	BitCombineToWord Devices			W	ord I	Devio	ces		nde: oint		Str- ing	-	onsta I nui	ant mber				
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]													\bullet									
[m.]														•						•	•	
[D.]																		٠				
[n.]																					۲	
Flag:																						

<< Communication Format >> D8120

	Content	0	1					
Bit0	Data length	7 bit	8 bit					
Bit1	Parity	(00):none, (01):odd, (11):even						
Bit2	Failty	(00).110118, (01)	.000, (11).even					
Bit3	Stop Bit	1 bit	2 bit					
Bit4		(0011):300, (0100):600						
Bit5	Baud rate	(0101):1200,	(0110):2400					
Bit6	(bps)	(0111):4800, (1000):9600						
Bit7		(1001):19200						
Bit8	Start 1	None	D8124					
Bit9	End 1	None	D8125					
Bit10	Reserved	-	-					
Bit11	Reserved	-	-					
Bit12	End 2	None	D8126					
Bit13	RS Mode	User define	ModBus					
Bit14	ModBus Mode	Ascii Mode	RTU Mode or Computer Link					
Bit15	Protocol	Format 1	Format 4					

• EXADP232/422/485 communication board connected to the 2nd communication port of EXPLC to execute transmitting and receiving data. The protocol is assigned by D8120

The protocol and data frame are all defined by user, and can be selected different communication interface board, so EXPLC can be communicated with other kind of machines.

♦ When main unit start to operate, it will check if there is RS instruction by itself. If yes, then Computer link mode is ineffective. The Protocol will be changed to user define mode or Modbus mode.

Computer link mode: Program of this mode can not be written RS instruction; i.e., all stations are slaver unit. It only set content of D8120 and D8121 (bit14 of D8120 have to be set 1), i.e., it can construct multi-station connection system.

Example:

[MOV	HE086	D8120] ; Format 4; 9600; 7E1
[мо∨	K1	D8121] ; station no. (1~32)

♦ Modbus mode: Program of this mode have to use RS instruction to change protocol (bit13 of D8120 have to be set 1). Because there is RS instruction, then it can be master unit and can be slaver unit also. It uses M8122 and M8123 to control transmitting and receiving data.

Example:

M8002					
	H3386	D8120]; Modbus	Ascii mode	; 9600; 7E1
└_[MOV	H00	D8121]; Master s	tation	
−[RS		D98			

=0

Return message OK

M8123

- When RS executing, changing data of D8120 does not affect current operation.
- The using frequency of this instruction in program is not limited, but it only can use one execution command for one scan-time and it have to design more than one scan time of OFF time when changing.
- The communicate port of EXPLC can be as master unit or slaver unit. Therefore, once RS execute, then enable the function of communication and wait for trigger signal.
- If RS instruction is used, then PRUN instruction can't be used.

- << Request of transmission >> M8122
- When the transmit request flag M8122 to be driven in the waiting communicate status, then PLC will transmit from the head address of D100 for D98 number of bytes to slaver, and M8122 will auto reset after transmit completed.
- << Receive Finish Flag >> M8123
- When PLC finish to receive data, receive finish flag M8123 will set to "1", user can use program to reset it.
- << Carrier Detect Flag >> M8124

Reserved

Handle return data

< 8 Bits Mode > M8161=ON is 8 bits operation

	← 1				
	ignore				
start		end			
STX	D100 down	D101 down	D102 down	D103 down	ETX
start		end			
STX	D200 down	D201 down	D202 down	D203 down	ETX

< 16 Bits Mode > M8161=OFF is 16 bits operation

	I← 10								
	Up 8 bits	Down 8bit	Down 8bits						
start		end							
STX	D100 down	D100 up	D101 down	D101 up	ETX				
start		end							
STX	D200 down	D200 up	D201 down	D201 up	ETX				

• If error occurrence was in the communication, then error flag M8063 to be set and error code in the D8063.

907

RSW2

2

<< MODBUS RTU >> CRC error check mode

switch of EXRM0808R/T

- At ModBus RTU mode, number of send data must be set correctly and communication format has to be no STX/ETX.
- Data of error check is not included to number of send bytes. It is counted by PLC automatically, and result is stored to next two registers.

0,

RSW2

<< MODBUS ASCII >> LRC error check mode

At ModBus Ascii mode, number of send data must be set correctly and communication format has to be STX/ETX.

 Data of error check is not included to number of send bytes. It is counted by PLC automatically, and result is stored to next two registers.

<< User Defined Mode >> user defined error check

Ex1: application note of master at Ascii mode

Application note of Slave

M8002 SET M8161 8 bits operation mode +F MOV H13A6 D8120 communication format MOV K1 D8121 station number 1 (slave) MOV H003A D8124 STX MOV H000D D8125 ETX1 MOV H000A D8126 ETX2 M8002 MOV ┥┝ K8 D98 number of send bytes MOV K64 D99 number of receive bytes M8000 RS D100 D98 D200 D99 assign send/receive start address M8123 +—(T10 K1) T10 ┥┝ RST M8123 SET M8122 END

◆ At this mode, data of error check is counted by program designer, PLC do not calculate automatically.

• Send data must to be converted to Ascii and is stored to send area.

Ex2: application note of master at HEX mode

M8002	
	SET M8161 8 bits operation mode
	MOV H00A7 D8120 communication format
	MOV K0 D8121 PLC station number 0 (master)
	MOV H003A D8124 STX
	MOV H000D D8125 ETX1
	MOV H000A D8126 ETX2
M8002	
	MOV K8 D98 number of send bytes
	MOV K64 D99 number of receive bytes
M8000	
	RS D100 D98 D200 D99 assign send/receive start address
M8123	
┝─┤┝──	–(T10 K1)
T10	
	RST M8123 SET M8122 END
M8000	MOV K64 D99 number of receive bytes RS D100 D98 D200 D99 assign send/receive start addres -(T10 K1) RST M8123 SET M8122

Application note of slave

M8002
SET M8161 8 bits operation mode
MOV H00A7 D8120 communication format
MOV K1 D8121 station number 1 (slave)
MOV H003A D8124 STX
MOV H000D D8125 ETX1
MOV H000A D8126 ETX2
M8002
MOV K8 D98 number of send bytes
MOV K64 D99 number of receive bytes
M8000
RS D100 D98 D200 D99 assign send/receive start address
M8123
(T10 K1)
T10
RST M8123 SET M8122 END

• At this mode, data of error check is counted by designer, PLC do not calculate automatically.

Parallel Running

	FNC(81)		16 bits: PRUN(P) 5 Steps	J1n	J2n	J3n
D	PRUN	Ρ	32 bits: (D)PRUN(P) 9 Steps			

Operands: [S.]: KnX, KnM the lowest bit device is "0"

[D.]: KnM, KnY the lowest bit device is "0"

Oper -and			Bi	it De	evice	es		BitCombineToWord Devices				Word Devices				Index Pointer			Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Τ	С	Dn.b	KnX	KnY	KnM	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е	
[S.]								•		•												
[D.]									• •													

Flag: M8073, M8129

Master program M8070=1, [S.] [D.] is pseudo operand

M8070		[S.]	[D.]
	PRUN	K2X00	K2M0

Slaver program M8071=1, [S.] [D.] is pseudo operand

M8071		[S.]	[D.]
<u>├</u>	PRUN	K2X20	K2M0

- The content of D490~D497 of the master will transmit to D490~D497 of the slaver (M8070=1).
- ◆ The content of D500~D507 of the slaver will transmit to D500~D507 of the master (M8070=0).
- This instruction just set the status of M8070 and M8071, don't need to assign data register (D), then will auto communicate.
- Because only the data register communicate each other, just used MOV to execute conversion, then input relay of master can control the output relay of slaver, and the input relay of slaver can control the master.
- Relative parameter

M8122: start communication transmitted flag.

M8123: receive finished flag

M8070: master flag

M8071: slaver flag

M8129: sum check error flag

M8073: overtime flag

D8070: overtime register(ms)

D8072: communication taking time(ms)

- Example program please refer to EXPLC Application Note F081 .
- When PRUN instruction used, then can't use RS instruction.

Hex To Ascii Conversion

FNC(82)	16 b	its: ASC	I(P)				7	Steps	J1n	J2n	J3n
ASC	CI P											
Operands:	<				[S.]				>			
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	$ \longleftrightarrow $		←───		[D).] ——		\longrightarrow				
	n = (1 ~	64)										

Oper -and			Bi	t De	evice	s		BitCombineToWord Uord Devices					d Devices Index Pointer				Str- ing	-	onsta Il num			
Туре	Х	Υ	M S T C Dn.					KnX	KnY	KnM	KnS	Т	TCDR			V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•	ullet	•	•		lacksquare	•					
[D.]									•	•	•	٠	•	•								
[n.]																				•	•	

Flag:

.		[S.]	[D.]	n
	ASCI	D100	D200	K4

♦ When M8161=OFF, 16 bits operation mode.

- The hexadecimal data of source [S.] to be converted ASCII code and stored into upper/lower byte of destination device [D.] for n number of bytes.
- example: (D100)=0ABCH, (D101)=1234H K1 K2 K3 K4 K5 K6 K7 K8 "C" "0" "4" "3" "2" "1" D200 down "B" "A" "C" "4" "3" "2" D200 up "B" "A" "0" "C" "B" "A" "0" "4" "3" D201 down D201 up "C" "B" "A" "0" "4" "0" D202 down "C" "B" "A" D202 up "C" "B" "A" "C" "B" D203 down "C" D203 up X10 \dashv -(M8161) 8 bits operation mode [S.] [D.] n ASCI D100 D200 K4 M8000 -//---(M8161) when M8161 = ON, then 8 bits mode

Data of destination

- The hexadecimal data of source [S.] to be converted ASCII code and stored into lower byte of destination device [D.] for n number of bytes.
- When M8161=ON, 8 bits operation mode.

Example: (D100)=0ABCH, (D101)=1234H

	K1	K2	K3	K4	K5	K6	K7	K8
D200 down	"C"	"B"	"A"	"0"	"4"	"3"	"2"	"1"
D201 down		"C"	"B"	"A"	"0"	"4"	"3"	"2"
D202 down			"C"	"B"	"A"	"0"	"4"	"3"
D203 down				"C"	"B"	"A"	"0"	"4"
D204 down					"C"	"B"	"A"	"0"
D205 down						"C"	"B"	"A"
D206 down							"C"	"B"
D207 down								"C"

Ascii To Hex Conversion

FNC(83)	16 bits: HEX	(P)					7 Steps	J1n	J2n	J3n
HEX P										
Operands: <		[S.]				\longrightarrow	•			
K.H.	KnX KnY	KnM I	KnS	Т	С	D	V,Z			
\longleftrightarrow	<			[D.]			>			
n = (1 ~ 6	64)									

Oper -and			Bi	t De	evice	s		Bit		neToWo vices	ord	W	Word Devices			Index Pointer			Str- ing		onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•		•		•	۲	•						●	●	
[D.]									•	•	•	•	\bullet	\bullet		•	•					
[n.]																				٠	٠	

Flag:

		[S.]	[D.]	n
	HEX	D200	D100	K4
-				

- The ASCII code of the upper/lower byte in source [S.] to be converted to the hexadecimal data and stored into the destination device [D.] for n number byte.
- When M8161=OFF, 16 bits operation mode.
- Ex.: D200 down ="0", D200 up ="A", D201 down ="B", D201 up ="C"

D202 down ="1", D202 up ="2", D203 down ="3", D203 up ="4"									
	D102	D101	D100						
K1			0H						
K2			0AH						
K3			0ABH						
K4			0ABCH						
K5		ОH	ABC1H						
K6		0AH	BC12H						
K7		0ABH	C123H						
K8		0ABCH	1234H						

X10							
	(M8161)	8 bits	mo	de		
			[S.]		[D.]	n	_
		HEX	D20	0	D100	K4	
	M80	00					-
		—(M8161	I) wh	nen	M8161 = O	N, then 8 b	its mode
I		←──	- 16	bits	\longrightarrow		
		igno	re	Lov	ver 8 bits		
			sour	ce c	lata		

- The ASCII code of the lower byte in source [S.] to be converted to the hexadecimal data and stored into the destination device [D.] for n number byte.
- When M8161=ON, 8 bits operation mode.

Ex: D200="0", D201="A", D202="B", D203="C" D204="1" D205="2" D206="3" D207="4"

D204- 1, D205- 2, D206- 3, D207- 4										
D102	D101	D100								
		ОH								
		0AH								
		0ABH								
		0ABCH								
	ОH	ABC1H								
	0AH	BC12H								
	0ABH	C123H								
	0ABCH	1234H								
	, ,	D102 D101								

Check Code

FN	IC(84)		16 bi	ts: CCD	(P)		7 Steps	J1n	J2n	J3n			
C	CD	Ρ											
Operand	s:		←			[S.]			\longrightarrow				
	K	.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	←	n →							← n →				
	n =	1~64	4		~		· [D.] ·		\longrightarrow				

Oper -and			Bi	t De	evice	es		Bit	BitCombineToWord Devices			W	Word Devices				nde: oint		Str- ing		onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•	•		•								
[D.]										•	•	•	•	•								
[n.]													•	•						٠	٠	

Flag:

M8000		[S.]	[D.]	[n.]
	CCD	D100	D0	K10

♦ Calculation the data of n bytes (16 bits) from the head address of source [S.], then put the Sum \rightarrow D00, Vertical Parity \rightarrow D01([D.]+1).

M8161=OFF 16 bit mode											
(5	S.)				Bit Pa	attern					
D100 L	K100	0	0 1 1 0 0 1 0 0								
D100 H	K111	0	1	1	0	1	1	1	1		
D101 L	K100	0	1	1	0	0	1	0	0		
D101 H	K98	0	1	1	0	0	0	1	0		
D102 L	K123	0	1	1	1	1	0	1	1		
D102 H	K66	0	1	0	0	0	0	1	0		
D103 L	K100	0	1	1	0	0	1	0	0		
D103 H	K95	0	1	0	1	1	1	1	1		
D104 L	K210	1	1	0	1	0	0	1	0		
D104 H	K88	0	1	0	1	1	0	0	0		
Vertica	1	0	0	0	0	1	0	1			
Sum	K1091										

X10 -(M8161) M8161=ON, 8 bits operation mode. \dashv [S.] [D.] n CCD D100 D 0 K4 M8000 -//──(M8161) - 16 bits -┝ ≻ Lower 8 bits ignore source data

5 - 90

◆Calculation the data of n bytes (8 bits) from the head address of source [S.], then put the Sum→D00, Vertical Parity→D01([D.]+1).

	M8161=ON 8 bit mode										
(5	S.)				Bit Pa	attern					
D100	K100	0	1	1	0	0	1	0	0		
D101	K111	0	1	1	0	1	1	1	1		
D102	K100	0	1	1	0	0	1	0	0		
D103	K98	0	1	1	0	0	0	1	0		
D104	K123	0	1	1	1	1	0	1	1		
D105	K66	0	1	0	0	0	0	1	0		
D106	K100	0	1	1	0	0	1	0	0		
D107	K95	0	1	0	1	1	1	1	1		
D108	K210	1	1	0	1	0	0	1	0		
D109	K88	0	1	0	1	1	0	0	0		
Vertica	l parity	1	0	0	0	0	1	0	1		
SUM	K1091										

Volume Read

FNC	(85)	16	oits: VRF	RD(P)		5 Steps	J1n	J2n	J3n			
VRF	RD F)										
Operands:			←──			[D.]			→			
	K.H.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	← ⇒	[S.] =	(0 – 3)									

Oper -and			Bi	t De	evice	s		BitCombineToWord Devices			Word Devices				Index Pointer			Str- ing	Constant Real numbe			
Туре	X	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]																				\bullet	\bullet	
[D.]									•	•	•		•									

M8000		[S.]	[D.]
	VRRD	K0	D0
X001			
	(T0) D0		

- The identified volume [S.] of the master unit is read as an analog input and converted to 8 bits binary code (0-255) stored into the destination device [D.].
- The content of [D.] can as Timer data or Counter data.

Volume Scale

FNC	(86)		16 b	its: VRS	C(P)				5	Steps	J1n	J2n	J3n
VR	SC	Ρ											
Operands				←───			[D.]						
	K.	Н.	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	←	\rightarrow	[S.] = (0	- 3)				•					

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]																				•	•	
[D.]									•	•	•	\bullet				۲	٠					

- The identified volume [S.] of the master unit is read as an analog input and converted to 8 bits binary code (0-255) then divided 16, the result (0-15) stored into the destination device [D.].
- This function the volume can as a 16 (0-15) position rotary switch.

PID FNC(88) 16 bits: PID - - - - - 9 Steps J1n J2n--J3n--PID Operands: [S1.][S2.][S3.] | ← ≻ K.H. KnX С D KnY KnM KnS Т V,Z **∢**[D.] **≯** Operands: Х Y S Μ BitCombineToWord Oper Index Str-Constant **Bit Devices** Word Devices Pointer Devices ing Real number -and Х Υ М S T C Dn.b KnX KnY KnM KnS ТС D R V ΖP Н Κ Е Type [S.1] • [S2.] • • [S3.] lacksquare[D.] Flag: X0 [S1.] [S2.] [S3.] [D.] ┨┠ PID D0 D1 D100 D2 Set Value Process Value Parameter Output Manipulation Value (SV) (PV) (MV) [S1.] : Set Value Use setting execute program as left mentioned, and stored the result [S2.] : Process Value (MV) into [D] [S3.] ~ [S3.]+6 : Control Parameter [D.] : Output manipulation value data register ◆ It will occupy continuous 25 devices from assigned [S3.]. In this example, it occupies D100 ~ D124. • When execute in first time, have to clear the content of [S3.]+7 to be 0. M0 MOVP K0 D107 ┥┝

• Before execute PID operation, have to use MOV command to write the parameter set value for PID control first.

D2

D100

PID

D0

D1

[S3.]	Sampling Time (Ts)	1~32767 (ms) (can't set shorter than scan-time)
[S3.] + 1	Act direction (ACT)	BIT0 : 0 : forward action ; 1 : reverse action
		BIT1:0:Without input change Alarm;1:With input change Alarm
		BIT2:0:Without output change Alarm;1:With output change Alarm
		BIT3 : reserved
		BIT4 : reserved
		BIT5 : 0 : Without output limit ; 1 : With output limit
		BIT6 ~ BIT15 : reserved
[S3.] + 2	Input Filter (α)	0 ~ 99 (%)
[S3.] + 3	Proportion Constant (Kp)	1 ~ 32767 (%)
[S3.] + 4	Integral Time Constant (Ti)	1 ~ 32767 (x 100ms), 0 is without integral action
[S3.] + 5	Derivative Filter Constant (Kd)	0 ~ 100 (%)
[S3.] + 6	Time Derivative Constant (Td)	1 ~ 32767 (x 10ms), 0 is without derivative action

[S3.] + 7	
	For internal operation when execute PID
[S3.] + 19	J
[S3.] + 20	System reserved
[S3.] + 21	System reserved
[S3.] + 22	Output maximum value limitation, it is effective when [S3.]+1, BIT5=1
[S3.] + 23	Output minimum value limitation, it is effective when [S3.]+1, BIT5=1
[S3.] + 24	System reserved

• Basic operation of PID instruction:

This instruction is based on speed form, measure Derivative calculation formula to execute PID operation. In PID control, execute operation formula of forward action or reverse action according to the content of "Act direction" which is assigned by [S3.].

PID basic formula:

FNC(89)			
FNC(90)			
FNC(91)			
FNC(92)			
FNC(93)			
			I
FNC(94)			
	I		
FNC(95)			
FNC(96)			
FNC(97)			
		[]	1
FNC(98)			
		[]]
FNC(99)			

ZPUSH/Batch Store of Index Register

FNC(10	2)	16bits	: ZPUS	SH & ZI	PUSH(I	P) ·		3 ste	eps		J3n
ZPUSI	H P										
Operands:								← [D.] →			
	K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z		

Operands:

Oper -and			Bi	t De	evice	s		Bit		neToWo vices	ord	W	ord [Devio	ces		nde: oint		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]																						

Flag: none

- 1) The contents of the index registers V0 to V7 and Z0 to Z7 are batch-stored temporarily to [D.] and later. When the contents of index registers are batch-stored, the number of times of batch-storage [D.] is incremented by "1".
- 2) For restoring the batch-stored data, use ZPOP (FNC103) instruction. Use ZPUSH (FNC102) and ZPOP (FNC103) instruction as a pair.
- 3) By specifying a same device to [D.] ZPUSH (FNC102) and ZPOP (FNC103) instructions can be used in the nest structure. In this case, the occupied points are added by "16" after [D.] every time ZPUSH (FNC102) instruction is executed. Secure in advance sufficient area for the number of the next structure.
- 4) The figure below shows the data structure batch-stored in [D.] and later.

When the nest structure is not used

Related instruction

Instruction	Description
ZPOP (FNC103)	Restores the index registers V0 to V7 and Z0 to Z7 which were batch-stored temporarily by ZPUSH (FNC102) instruction.

Cautions

- When not using the nest structure, clear the number of times of batch-storage [D.] before executing ZPUSH (FNC102) instruction.
- When using the nest structure, clear the number of times of batch-storage [D.] before executing ZPUSH (FNC102) instruction for the first time.

Errors

An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

• When the range of points used after [D.] in ZPUSH (FNC102) instruction exceeds the corresponding device range (error code: K6706)

• When the number of times of batch-storage [D.] stores a negative value while ZPUSH (FNC102) instruction is executed (error code: K6707)

Program example

ZPOP/Batch POP of Index Register

FNC(10	3)	16 bits	s: ZPO	P & (D)	ZPOP((P)		3 :	steps		J3n
ZPOP	Р										
Operands:								€ [D.] →			
	K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z		

Operands:

Oper -and			Bi	t De	evice	s		Bit		neToWo vices	ord	W	ord [Devio	ces		nde: oint		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]																						

Flag: none

- 1) The contents of the index registers V0 to V7 and Z0 to Z7 which were batch-stored temporarily to [D.] and later are restored to the original index registers. When the contents of the index registers are restored, the number of times of batch-storage [D.] is decremented by "1".
- 2) For temporarily batch-storing the data, use ZPUSH (FNC102) instruction. Use ZPUSH (FNC102) and ZPOP (FNC103) instruction as a pair.

Related instruction

	Instruction	Description
Ē	ZPUSH	Tomporarily batch stores the present value of the index registers $\sqrt{0}$ to $\sqrt{7}$ and 70 to 77
	(FNC102)	Temporarily batch-stores the present value of the index registers V0 to V7 and Z0 to Z7.

Errors

An operation error is caused in the following cases; the error flag M8067 turns ON, and the error code is stored in D8067.

 When the number of times of batch-storage (D) stores "0" or a negative value while ZPOP (FNC103) instruction is executed (error code: K6706)

For a program example, refer to Section ZPUSH

Floating Point Compare

F	NC(110)																	J2n	,	J3n-
D	ECN	ИР	P		32	bits	:(D)EC	MP & (D)ECN	IP(P) - ·			1	3 ste	eps							
Opera	nds:		e [S1.]>								l€	[S1.])	▶								
		İ	K,⊦	1	Knλ	X	KnY	KnM	KnS	Т	С		D	1	/,Z							
		L •	€ [S2.	1→								┥	[S2.] ;	▶								
Opera	nds:	'	•	 ∢	<u> </u>		[D.] —	──→						1								
		Γ	Х	Ť	Y		M	S	The r	esult is	indicat	ed l	bv 3	bit c	levic	es s	spec	ified	l with t	he he	ad	
		L	~		•			0		ooun io	indica						,000				au	
Oper			Б.			_		Bi	tCombi	neToWc	ord	14/					nde	х	Str-	C	onsta	ant
and					evice	-	T			rices			ord D			P	oint		ing		l nur	1
Туре	Х	Y	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		K	Н	E
[S1.] [S2.]																						
[D.]		•	•	•										•	-					-	•	
<u> </u>																						4
=lag: r	none								a	ddress	entere	d as	D.									
-																						
X	001					[\$	S1.]	[S2.]	[D.]		(D1	11,D1	10)			(D2	21,Ð	29)	M0,	M1,N	/ 12
		—[DE	CN	IP	Γ	D 10	D 2	0	M 0	bir	nary f	floatin	g dat	a : bi	nary	floati	ng da	ata			
		Ī	0 N																			
				– w	/hen	(D	11, D10)	>	(D21,	D20)	,th	nen M	10 C	N							
		r	И1		bina	àry f	loating	lata	bina	ary floati	ng data											
	-			– w	/hen	(D	11, D10)	=	(D21,	D20)	,th	nen M	11 C	N							
		ſ	M 2			•	loating o	,	bina	ary floatii	,											
				– w	/hen	(D	11, D10)	<	(D21,	D20)	.th	nen M	12 C	N							
I			↑			•	loating c	,	bina	ry floatii		, -										
		Wh.	' on Xí	001	OFF	the	n not ex	ecute F		10~M2 s	tatus ur	ncha	naed	I								
		V V I I		001	<u> </u>						iaius ui	10110	uigeu									

• Compare the binary floating data of the source devices [S1.] and [S2.], this will automatic ON/OFF 3 bit devices from the head address of [D.].

• When source operand assigned by constant K or H, it will be converted to binary floating data automatically.

	X001					(K5000)	:	(D101	D100) →
M10	M11	M12							
_		D ECMP	K5000	D100	M 10	Convert automatically	/	binary float	ting data
1						binary floating data			

Floating Point Zone Compare

F	NC	(111))	Π															J2n-	-	J3n
D	EZ		, Р		32 k	oits	:(D)EZ	CP & (I	D)EZCF	P(P)			1	7 ste	ps				V LII		
Opera			· · ·				.] [S.]		, -	. /				-	·						
		Ì	K,H	ŀ	≺nX	(KnY	KnM	KnS	Т	С		D	V,	Z						
		L																			
Opera	nds:			┝			[D.] —	── >													
			Х		Y		М	S	[D.] o	ccupy 3	bit dev	ices	from t	the he	ead ad	dress	s,[S1.] • [S2.]set [S	1.]≦	[S2.]
Oper			Bit	Dev	vices	5		Bi		neToWo ⁄ices	ord	W	ord D	evice	es	Inde Point		Str-		onsta	ant nber
-and Type	X	Y	Μ	s	ΤĪ	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R V		P	ing	Kea	H	E
[S1.]														•	•				•	٠	
[S2.] [S.]	-			_										•	<u>•</u>				•	-	
[D.]		•	•	•										•	-				•	•	
															•		<u> </u>				<u> </u>
Flag: N	lone	Э																			
	X00	1 г	_				61.]	[S2		[S.]	1	D.]									
			DEZ	ZCP)	D	0 20	D 3	80	D 0		М3									
		r	/ 13	\ ^ /l=	o.o./I				/1					46.	MO						
					•		1, D20) ting dat			D1, D0) floating				,the	en M3	ON					
		P	Л4 II——	0	ary	nou	ang aat	4	bindiy	noading	uutu										
		N	M 5	Wh	en(D21 floa	1, D20 iting dat) a	≦binary	(D1 floating	D0) data	≦		(D3	31,D30),	then	M4 ON	N		
				Wh	en(D1,	D0)		>	(D31,	D30)			,†	then N	/15 O	N				
I			↑		•		ting data	a		, floating											
		lf X	0010	FF, tl	hen	not	execute	e ECMF	р, M3~M	5 status	uncha	nged									
♦ The	resu	ult w	ill aut	oma	atic	ally	set 3 b	oit devi	ces fror	n the h	ead ad	ldres	ss of	[D.]							
♦ Whe	en so	ourc	e ope	ran	d a	ssig	gned by	const	ant K o	r H, it w	vill be c	onv	erted	to b	inary f	loati	ng da	ata aut	omati	cally	y
>	(001						<u> </u>							(K	(10	:[D6,D5	5] : (K	2800)	\rightarrow MC	D,M1,M2
			DE	ZCF		ł	、 10	K28	300	D 5		M 0)		t automat floating d		binary		rt automa floating da		
															gu				ig at	-	
♦ Set	[S1.]≦	[S2.],	if [\$	S1.]	>[S2.], th	ien dat	a of [S2	2.] is as	same	as c	data d	of [S1	1.].						

Floating Point Move

Operands:

Х Y Μ S

Oper -and			Bi	it De	evice	s		Bit		neToWo vices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•								•
[D.]														\bullet								

Flag:

(real number)

D10

Program example

1.

Floating Point to Character String Conversion

	FNC(116)				
D	ESTR	Ρ	32 bits:(D)ESTR & (D)ESTR(P) 13 steps		
Dooo	nuad				

Reserved

Character String to Floating Point Conversion

	FNC(117)				
D	EVAL	Ρ	32 bits:(D)EVAL & (D)EVAL(P) 9 steps		
Poso	nvod				

Reserved

Float to Scientific conversion

	FNC(118)					
D	EBCD	Р	32 bits:(D)EBCD & (D)EBCD(P) 9 steps			
Deee	m va al					

Reserved

Scientific to Float conversion

	FNC(119)] [
D	EBIN	Ρ	32 bits:(D)EBIN & (D)EBIN(P)9 steps			

Reserved

Floating Point Addition

FNC(120)												J2n	J3n
D EAI	DD	Р	32 bit	s:(D)EA	DD & (D)EADI	D(P) ·		13	3 steps				
Operands:	┥	→	[S1.] [S	2.]			[S	1.] [S2	.] ←→					
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z				
									← [D.]→					
Operands:									'					
		Х	Y	М	S									
		•			•									
Oper		Bit D	evices		Bi	tCombir	neToWor	ď	Word De	evices	Index	Str-	Cons	

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devid	ces		nde: ointe		Str- ing	-	onsta Il num	
Туре	X	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]														•	•					•	\bullet	
[S2.]														•	•					•	\bullet	
[D.]														•	•							

Flag: None

X001	[S1.]	[S2.]	[D.]	(D21,D20) +	(D51,D50) –	→ (D51, D50)
D EADD	D 10	D 20	D 50	binary floating data	binary floating data	binary floating data

• Two devices of binary floating data are added, then the result stored by form of binary floating data at destination device.

• When source operand assigned by constant K or H, it will be converted to binary floating data automatically.

X002					(D101,D100)	+ (K2346) \rightarrow	(D111, D110)
	D EADD	D 100	K 1248	D 110	binary floating data	convert automatically to	binary floating data
1					-	binary floating data	

• Enable assign source operand [S.] and destination operand [D.] to same device number.

Floating Point Subtraction

		5	-			_																
F	NC(121)																J1n	J2n	,	J3n
D	ESI	JB	Ρ		32	bits	:(D)ESl	JB & ([D)ESU	B(P)			· '	13 st	eps							
Opera	nds:	•	<u> </u>	→	[S1.]	[S2.	.]			[;	S1.] [S2	2.] ←		>								
			K,⊦	ł	Knλ	ĸ	KnY	KnM	KnS	Т	С		D	۱	/,Z							
												÷	[D.]-	>		-						
Oper								Bit	tCombi	neToWo	ord					1	nde	×	Str-	C	onsta	ant
-and					evice	S			Dev	vices		VV	ord L	Devic	es		ointe		ing	-	l nur	
Туре	X	Y	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		K	Η	E
[S1.]														•	•					•	•	
[S2.] [D.]																				•	•	<u> </u>
Operai	nds:		X		Y		M	S														
Flag: N	lone) }				I																
X	(001						[S1.]	[5	S2.]	[D.]		(D1	1,D1	0)	_	(D2	1, D	20)	\rightarrow (D51,	D50)	
			D	ΞSL	JB	[D 10	D 2	20	D 50	b	inary	floatir	ng data	a l	oinary	r floati	ng da	ata bin	ary floa	ting da	ita
floatir	ng d	ata	at de	estir	natio	n de	I.] subtr evice of igned b	[D.].	-	-	-	-						-			-	ly.

X002					(K2346) –	(D101,D100) →	(D111, D110)
	D ESUB	D 2346	D 100	D 110	Convert automatically to	binary floating data	binary floating data
1					binary floating data		

• Enable assign source operand [S.] and destination operand [D.] to same device number.

Floating Point Multiplication

	FNC(122	2)										J2n	J3n
D	EMUL	Р	32 bit	s:(D)EN	/UL & (I	D)EMUI	_(P) ·		13	3 steps			
Opera	ands:	\longleftrightarrow	[S1.][S	2.]			[S	1.] [S2.]	\longleftrightarrow				
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
									← [D.]→				
Opera	ands:												
		Х	Y	М	S								

Oper -and			Bi	t De	vice	s		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing		onsta Il nun	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]														•	•					•	٠	
[S2.]														•	•					•	٠	
[D.]														٠								

Flag: None

X001	[S1.]	[S2.]	[D.]	(D11,D10) ×	(D21, D20) \rightarrow	(D51, D50)
D EMUL	D 10	D 20	D 50	binary floating data	binary floating data	binary floating data

• Two source devices, binary floating data of [S1.] is multiplied by binary floating data of [S2.], then the result stored by form of binary floating data at destination device of [D.].

• When source operand assigned by constant K or H, it will be converted to binary floating data automatically.

X002					(K2346)	×	(D101,D100) —	→ (D111, D110)
	D EMUL	K 2346	D 100	D 110	Convert automatica	ally to	binary floating data	binary floating data
1					binary floating c	lata		

Floating Point Division

I	FNC(123	3)										J2n	J3n
D	EDIV	Ρ	32 bit	s:(D)ED	DIV & (D)EDIV(I	P)		13	steps			
Opera	ands:	\longleftrightarrow	[S1.][S	2.]			[S	1.] [S2.]	←──→				
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
									← [D.]→				
Opera	ands:												
		Х	Y	М	S								

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing		onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]															•					\bullet	٠	
[S2.]															•					\bullet	٠	
[D.]															•							

Flag: None

X001	[S1.]	[S2.]	[D.]	(D11,D10) ÷	(D21, D20)	→ (D51, D50)
	D 10	D 20	D 50	binary floating data	binary floating data	binary floating data

- The binary floating data of assignation device [S1.] is divided by binary floating data of assignation device [S2.], then the result stored by form of binary floating data at destination device of [D.].
- When source operand assigned by constant K or H, it will be converted to binary floating data automatically.

X002					(D101,D100)	\div (K100) \rightarrow	(D111, D110)
	D EDIV	D 100	K 100	D 110	binary floating data	convert automatically to	binary floating data
					-	binary floating data	

Floating Point Exponent

	FNC(124)					
D	EXP	Р	32 bits:(D)EXP & (D)EXP(P) 9 steps			
Deee	م رم ما					

Reserved

Floating Point Natural Logarithm

D LOGE P 32 bits:(D)CMP & (D)CMP(P)9 steps		

Reserved

Floating Point Common Logarithm

	FNC(126)					
D	LOG10	Ρ	32 bits:(D)LOG10 & (D)LOG10(P) 9 steps			
-						

Reserved
Floating Point Square Root

Х

Y

Μ

FNC(127	')										J2n	J3n
D ESQR	Р	32 bit	s:(D)ES	SQR & (D)ESQI	R(P)		13	steps			
Operands:	← [S.] →							← [S.] →				
	K,H	KnX	KnY	KnM	KnS	Т	С	D	Z			
_								 ← [D.]→				

Operands:

•

S The content of [S.] is positive number, then effective

Oper -and			Bi	t De	vice	s		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•	•					\bullet	\bullet	
[D.]														•	•							

Flag: M8020

X001		[S.]	[D.]	_√ (D11,D10)	\rightarrow	(D21, D20)
	D ESQR	D 10	D 20	binary floating data		binary floating data

- To be square root of binary floating data of source device [S.], then the result stored by binary floating data at destination device of [D.].
- When source operand assigned by constant K or H, it will be converted to binary floating data automatically.

X002				√ K1024	\rightarrow	(D111, D110)
	D ESQR	k1024	D110	Convert automa	atically to	binary floating data
-				binary floatin	g data	

• If the result is "0", then zero flag M8020 will ON.

• The content of source operand is effective only when it is positive. If the number is negative, then error flag M8067 will ON and stop executing.

Floating Point Negation

Oper -and			Bi	t De	evice	s		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]																						

Flag: None

Program example

In the program example shown below, the sign of floating point data stored in D100 and D101 is inverted, and the negation result is stored to D100 and D101 when X000 turns ON.

Float to Integer

	FNC(129	9)	16 bit	s:INT &	INT				5	steps		J2n	J3n
D	INT	Р	32 bit	s:(D)IN	T & (D)I	NT(P) -			(9 steps			
Opera	ands:								← [S.] →				
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
									← [D.]→				

Operands:

X Y M S

Oper -and			Bi	t De	evice	s		Bit		neToWo vices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•	•							
[D.]														•	•							

Flag:

X001		[S.]	[D.]	$(D11, D10) \rightarrow (D20)$
	INT	D10	D20	binary floating data BIN integer, remove the number of decimal fraction
X002		[S.]	[D.]	$(D101, D100) \rightarrow (D111, D110)$
	D INT	D100	D200	binary floating data BIN integer, remove the number of decimal fraction
		•		

 Convert binary floating data of assigned device [S.] to BIN integer, then store the result at destination device [D.]

When the result is "0", then zero flag M8020 will ON.
 When it converts and becomes 0 because of less than 1 borrow flag M8021 will ON.
 If the calculating result more than following limit, then will overflow and carry flag M8022 will ON.
 When 16 bit operation: -32,768~32,767
 When 32 bit operation: -2,147,483,648~2,147,483,647

Sine

	FNC(130))										J2n	J3n
D	SIN	Р	32 bit	s:(D)SII	N & (D)	SIN(P) -			9	steps			
Opera	ands:								← [S.]→				
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	•								← [D.]→				

Operands:

X Y M S 0°≦ angle<360°

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•	۲							
[D.]																						

Flag

X000		[S.]	[D.]	(D51, D50)RAD \rightarrow	(D61, D60)SIN
	D SIN	D50	D60	binary floating data	binary floating data

• Used assigned radian (RAD) by source [S.] to get SIN value, then store the result at destination device [D.].

Cosine

	FNC(131)										J2n	J3n
D	COS	Р	32 bit	s:(D)CC	DS & (D)COS(P)		9	steps			
Opera	ands:								← [S.] →				
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	-								← [D.]→				

Operands:

X Y M S 0°≦ angle <360°

Oper -and			Bi	t De	vice	s		Bit		neToWo vices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	X Y M S T C Dn.b						KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•	۲							
[D.]																						

Flag:

X000		[S.]	[D.]	(D51, D50)RAD	\rightarrow (D61, D60)COS
	D COS	D50	D60	binary floating data	binary floating data

• Used assigned angle (RAD) by source device [S.] to get COS value, then store the result at destination device [D.].

[D.]

D 61

D 60

FNC(132	2)											J2n	J3n
D TAN	Р	32 bit	s:(D)TA	N & (D)	TAN(P)			9	steps				
Operands:								←[S.] →					
	K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z				
-								← [D.]→					
Operands:													
	Х	Y	М	S	0°≦ a	ngle <36	50°						
Flag:						-							
X000			[S.]	[D	.]	(D51	, D50)F	$AD \rightarrow$	• (D61	, D60)TAN	1		
	D T/	٨N	D50	De	60	binar	y floating	j data	binary	loating dat	а		
I													
♦Used assig	ned an	gle (RAI	D) by so	ource de	vice [S.] to get -	TAN val	ue, then	store th	e result a	t destina	ation dev	ice [D.].
[S.]		D 51		D 50		RAD va	lue (ang	gle xπ/1	80) assi	gn to binar	y floating	data	
			\int										

TAN value binary floating data

Floating Point Arc Sine

Operands:

X Y M S

Oper -and			Bi	t De	evice	s		Bit		neToWo vices	ord	W	ord [Devio	ces		nde: oint		Str- ing	-	onsta Il num	
Туре	Х	X Y M S T C Dn.b						KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		K	Н	Ε
[S.]														•	۲							
[D.]		Y M S T C Dn I I I I I I												•	•							

Flag:

1. 32-bit

An angle is obtained from the sine value stored in [S.]+1, [S.], and stored to [D.]+1, [D.].A real number can be directly specified as [S.].

◆ [S.] +1, [S.]的SIN值,可以在-1.0~1.0的範圍內設定。

◆ [D.] +1, [D.] 中保存的角度(運算結果)是保存弧度(-π/2)~(π/2)的值。

關於弧度與角度之間的轉換,請參考RAD(FNC 136)命令、DEG(FNC 137)指令。

Error

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

• When a value specified in [S.] is outside the range from 1.0 to +1.0 (error code: K6706)

Program example

In the program example shown below, the SIN⁻¹ value of data (binary floating point) stored in D0 and D1 is calculated, and the angle is output in 4-digit BCD to Y040 to Y057 when X000 turns ON.

 \blacklozenge The angle (in radian) is calculated by the SIN $^{-1}$ operation

♦ The value in radian is converted into the value in degree ([2]).

◆The angle expressed in binary floating point (real number) is converted into an integer (binary) ([3])

◆The angle expressed in integer (binary) is output to the display unit ([4]).

Floating Point Arc Cosine

Operands:

X Y M S

Oper -and			Bi	it De	evice	s		Bit		neToWo vices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	X Y M S T C Dn.b						KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•	۲							
[D.]														•	•							

Flag:

32-bit

An angle is obtained from the cosine value stored in [S.]+1, [S.], and stored to [D.]+1, [D.]. A real number can be directly specified as [S.].

• The cosine value stored in [S.]+1, [S.] can be set within the range from 1.0 to +1.0.

• The angle (operation result) stored in [D.] +1, [D.] is expressed in radian (from 0 to π).

For conversion between radian and degree, refer to RAD (FNC136) and DEG (FNC137) instructions.

Error

An operation error is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067.

• When a value specified in [S.] is outside the range from 1.0 to +1.0 (error code: K6706)

Program example

In the program example shown below, the COS⁻¹ value of data (binary floating point) stored in D0 and D1 is calculated, and the angle is output in 4-digit BCD to Y040 to Y057 when X000 turns ON.

- \bullet The angle(in radian) is calculated by the COS $^{\text{-1}}$ operation
- ♦ The value in radian is converted into the value in degree ([2]).
- ◆The angle expressed in the binary floating point (real number) is converted into an integer (binary) ([3]).

◆ The angle expressed in integer (binary) is output to the display unit ([4]).

Floating Point Arc Tangent

Operands:

X Y M S

Oper -and			Bi	t De	evice	s		Bit		neToWo vices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	X Y M S T C Dn.b						KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•	۲							
[D.]		Y M S I C Dn.												•	•							

Flag:

32bit

An angle is obtained from the tangent value stored in [S.]+1, [S.], and stored to [D.] +1, [D.]. A real number can be directly specified as [S.].

• The angle (operation result) stored in [D.]+1, [D.] is expressed in radian (from $-\pi/2$ to $+\pi/2$). For conversion between radian and degree, refer to RAD (FNC136) and DEG (FNC137) instructions

Program example

In the program example shown below, the TAN⁻¹ value of data (binary floating point) stored in D0 and D1 is calculated, and the angle is output in 4-digit BCD to Y040 to Y057 when X000 turns ON.

The angle (in radian) is calculated by the TAN⁻¹ operation
The value in radian is converted into the value in degree ([2]).

♦ The angle expressed in binary floating point (real number) is converted into an integer (binary) ([3]).

• The angle expressed in integer (binary) is output to the display unit ([4]).

Floating Point Degree to Radian Conversion

Operands:

X Y M S

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•	•							
[D.]														•	lacksquare							

Flag:

32bit

The unit of [S.]+1, [S.] is converted from degree into radian, and the operation result is stored to [D.]+1, [D.]. A real number can be directly specified as [S.].

Binary floating point (real number)

Binary floating point (real number)

• The conversion from degree into radian is executed as follows:

Radian = Degree $\cdot \pi/180$

Program example

In the program example shown below, a 4-digit BCD value set in degree in X020 to X037 is converted into a binary floating point value in radian, and stored to D20 and D21 when X000 turns ON.

♦ Angle to be converted into radian is input

♦ The input angle is converted into binary floating point (real number) ([2]).

♦ The angle is converted from degree into radian ([3]).

Floating Point Radian to Degree Conversion

	FNC(137	7)										J3n
D	DEG	Р	32 bit	s:(D)DE	EG & (D)DEG(F	P) (- 9 step	os		
Opera	ands:								← [S.]→			
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z		
	-								← [D.]→			

Operands:

X Y M S

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	X Y M S T C Dn.b						KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•	۲							
[D.]														•	٠							

Flag:

1. 32-bit

The unit of [S.]+1, [S.] is converted from radian into degree, and the operation result is stored to [D.]+1, [D.].

• The conversion from radian into degree is executed as follows: Degree = Radian $\cdot 180/\pi$

Program example

In the program example shown below, a binary floating point value set in radian in D20 and D21 is converted into a BCD value in degree, and stored to Y040 and Y057 when X000 turns ON.

- A value in radian is converted into a value in degree
- The angle in binary floating point (real number) is converted into an integer ([2]).
- ◆ The converted integer is output to the display unit ([3]).

Byte Swap

	FNC(147	7)	16 bit	s:SWAF	P & SW/	4P(P) -			5	steps	J1n	J2n	J3n
D	SWAP	Р	32 bit	s:(D)SV	VAP & (D)SWA	P(P)		9	steps			
Oper	ands:						[S.]			>			
		K,H	KnX	KnY	KnM	KnS	Т	С	D	Z			

Operands:

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]									•	•												

Flag

when 16bits, Down 8 bits and Up8 bits exchange.

◆ If use continuative executing instruction, each scan cycle will execute to exchange, please pay attention

• This instruction is as same as FNC17 (XCH) function of expanded.

FNC150 – 159 Position Control

◆ The Ex series of controller pulse output signal: pulse (negative logic) + sign, as following drawing

fixed Y00, Y01 pulse output point		
fixed Y02,Y03 direction output point	ON (forward)	OFF (reverse)

- The pulse duty cycle is 50% ON, 50% OFF
- Single position control. The curve condition of controller and relative device.

Absolute current value read

	FNC(155)	16 bits:ABS7 steps			
D	ABS	32 bits:(D)ABS 11 steps			

Reserved

Zero return

Operands: $| \in [S3.] \Rightarrow | \in [D.] \Rightarrow |$

 $\begin{array}{c|c} S3.] \Rightarrow \in [D.] \Rightarrow \\ \hline X & Y & M & S \end{array}$

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devic	es		nde: ointe		Str- ing		onsta I num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Η	Е
[S1.]								•	•	•	•	•	•	•	•		•					
[S2.]														۲								
[S3.]																						
[D.]		\bullet																				

Flag: M8029

	[S2.]	[S3.]	[0.]
RN K100	0 D1000	X02	Y00

• [D.] assign pulse output point

[S1.] assign speed of zero-return search for DOG point (Home Speed) 10 ~ 200,000 pps $_{\circ}$

[S2.] it will occupy continuous 100 words from assigned [S2.]. In this example, it occupies D1000~D1099.

[S2.]+0 : speed of search for zero-point 10~32,767 pps

[S2.]+1 : operation direction control point Y2~Y7

[S2.]+2 : parameter setting

1						5		
b7	b6	b5	b4	b3	b2	b1	b0	

[S2.]+3~[S2.]+99: as same as FNC(59) PLSR 的[S3.]+3~[S3.]+99

[S3.] assign DOG point input signal. Effective range X00~X07 (pulse catch signal M8170~M8177) Zero-return signal is set by [S2.]+24.

- When ZRN command is executed, zero-return point busy flag M8154~M8157 will be set automatically to avoid drive DRVI, DRVA at the same time.
- This command Y00 ~ Y03 can be used once and has to select transistor output module.
- It is fixed to 32 bits operation. If user assigns 16 bits operation mode, then error 6509 will be occurred.

Pulse V

|**€**[D1.]**→**|

Oper -and			Bi	t De	vice	es		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta I num	
Туре	Х	Υ	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]														•								
[D1.]																						
[D2.]																						

Flag: M8029

MO		[S.]	[D1.]	[D2.]
	DPLSV	D100	Y00	Y02

• [D1.] assign operation pulse output point. (It is fixed to Y00~Y03 as output point)

[D2.] assign operation direction output point.. (It is fixed to Y02~Y07 as output point)

[S.] It will occupy continuous 100 words start from assigned [S.]. In this example, it occupies D1000~D1099.

[S.]+1, [S]+0 : assign output frequency. [32bits]:10 ~ 200,000 Hz

|--|

b6	b	5	b4	b3	b2	b1	b0
	ή						
							L
-							

[S.]+41, [S.]+40 : PLSV number of output pulses. Value = 0 is without target operation.

[S.]+3 ~ [S.]+99 : as same as FNC(59) PLSR [S3.]+3 ~ [S3.]+99

- When PLSV command is executed, busy flag M8142~M8145 will be set automatically.
- Value of [S.] can be changed during pulse output, but symbol (+,-) can not be changed. If drive contact OFF, then
 decelerate to bias speed stop directly.
- It is fixed to 32 bits operation. If user assigns 16 bits operation mode, then error 6509 will be occurred.
- Following modes can be achieved,

J3n--

Drive to increment

S

Operands: → [D1.] [D2.] Х Y Μ

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devic	ces		nde: ointe		Str- ing		onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•									•		
[S2.]														•								
[D1.]		•																				
[D2.]		۲																				

Flag: M8029

X10		[S1.]	[S2.]	[D1.]	[D2.]
	DDRVI	D0	D1000	Y00	Y02

Position Speed

[D1.] assign operation pulse output point. (only Y00~Y03).

- [D2.] assign operation direction output point. (only Y02~Y07).
- [S1.] assign number of output pulses for increment address. (positive value: forward; negative value: reverse)

[S2.] It will occupy continuous 100 words start from assigned [S2.]. In this example, it occupies D1000~D1099. [S2.]+1, [S2]+0 : assign output frequency. [32bits]:10 ~ 200,000 Hz.

[S2]+2 : Parameter setting

[S2.]+3~[S2.]+99: as same as FNC(59) PLSR 的[S3.]+3~[S3.]+99

- This instruction for Y0~Y3 only can be used once, and has to select transistor output module.
- When DDRVI are executed, busy flag M8146~M8149 will be set automatically by system. ٠
- During output pulse, to modify value of [S1], [S2]+1, [S2]+0 is ineffective. ٠
- ◆ It is fixed to 32 bits operation. If user assigns 16 bits operation mode, then error 6509 will be occurred.

Drive to absolute

- When DDRVA are executed, busy flag M8150~M8153 will be set automatically by system.
- During output pulse, to modify value of [S1], [S2]+1, [S2]+0 is ineffective.
- ♦ It is fixed to 32 bits operation. If user assigns 16 bits operation mode, then error 6509 will be occurred.

Time Compare FNC(160) 16 bits:TCMP & TCMP(P) - - - - - - 5 steps J1n J2n--J3n--TCMP Ρ [S1.][S2.][S3.] Operands: |€ KnX KnY KnM V,Z K,H KnS С D Т [S.] ≻ Operands: [D.] S [D.] occupy continuative 3 bits Х Υ Μ BitCombineToWord Oper Index Str-Constant **Bit Devices** Word Devices Devices Pointer Real number -and ing KnX KnY ZP Х Υ Μ S Т С Dn.b KnM KnS Т С D R V Κ Н Туре Е \bullet • [S1.] 0 • • \bullet [S2.] 0 • • • [S3.] ۲ • • \bullet [S.] \bullet • [D.] Flag: M8020, M8021, M8022 X000 [S1.] [S2.] [S3.] [S.] [D.] ┨┠ D 0 M 0 TCMP K 10 K 30 K 50 10 hours30 mins 50 secs [S.] M0 D0 (hours) ┥┝ 10 hours 30 mins 50 secs > D1 (mins) ON D2 (secs) M1 D0 (hours) 10 hours 30 mins 50 secs = D1 (mins) ON D2 (secs) M2 D0 (hours) ┥┝ 10 hours 30 mins 50 secs < D1 (mins) ON D2 (secs)

When X000 OFF, not execute TCMP, M0~M2 status unchanged.

◆ Time of source device 「[S1.],[S2.],[S3.]」 compare with time value which stored at 3 bits from the head address of [S.]. According the result, the device of 3 bits from the head address of [D.] will be ON/OFF automatically.

[S1.] : "hour" assign 「0~23」 hour.
[S2.] : "min" assign 「0~59」 min.
[S3.] : "sec" assign 「0~59」 sec.
[S.] : "hour" assign 「0~23」 hour.
[S.] + 1 : "min" assign 「0~59」 min.
[S.] + 2 : "sec" assign 「0~59」 sec.

[D.], [D.] + 1, [D.] + 2: according the result, device of 3 bits from the head address of [D.] is ON/OFF automatically.

◆The content of real time clock stored at special register D8015(hour), D8014(min), D8013(sec).

Time Zone Compare

FN	1C(161)		16	bits	:TZCP	& TZCI	P(P) - ·					9 st	teps				J1n	J2n	,	J3n
-	TZC	P	Ρ																			
Operan	ds:									←-[S1.][S2.][S3	.];	>		_						
		Γ	K,⊦	1	Kn	Х	KnY	KnM	KnS	Т	С		D	\	/,Z							
		L																				
Operan	ds:			∢	<		[D.] –	>														
		Γ	Х		Y		М	S	Occi	upy 3 b	its from	h the	hea	d ac	dre	SS 0	f [D	1.56	et [S1]	< [\$2	1	
		L															. [=	.],		= [9-	1	
Oper			Bi	t De	evice	20		Bit		neToWo	ord		ord E)ovic	201		nde		Str-		onsta	
-and	V	<u></u>								/ices	14.0				1		oint		ing		l nun	
Type [S1.]	Х	Y	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	T	C ●	D	R	V	Z	Ρ		K	Н	E
[S1.]												•	•	•								
[S3.]												•	•	•								
[S.]																						
[D.]		•	•	•																		
Flag: M	802	20, 1	M80	21,	M80)22																
		_																				
	000)				1	[S1.]	-	2.]	[S.]		[D.]										
			Т	ZCF	5		D 20	D	30	D 0		MЗ	}									
					Г		[S1.]	_		[S.]												
			M3		_		20 (hour	-		D0 (hou												
					-		21 (mins		_	D1 (mir									(N		
					L	Dž	22 (secs)		D2 (sec	cs)					~ ~ 1						
					Г		0 (1	->		D0 //					-	S2.]		1				
			M4		.	D2	20 (hour	s)		D0 (hou	urs)				D30	(ho	urs)	-				
			11			Rź	21 (mins 22 (secs	} ≦		D1 (mir D2 (sec	ns)	≦			R31	(mii sec	ns)	-	C	ON		
					L	02	22 (3863)		D2 (Set	,5)				032	(580	.5)					
			M5							D0 (hou	ure)			Г	D30	(ho	ure)	1				
					-					D1 (mir	ŕ		>			(mir		1	c	DN		
			↑						-	D2 (sec			-			(sec	,	1				
	ך When X000 OFF, then r							execute	TZCP.		,	unch	ange	∟ d.	202	,550						

• Compare it with time value zone of 3 bits from the head address of [S.]. According to the result, then 3 bits from the head address of [D.] will be ON/OFF automatically.

[S1.], [S.] +1, [S.] +2
: The lower limit of compare range, assign "hour", "min", "sec".
[S2.], [S2.] +1, [S2.] +2
: The topper limit of compare range, assign "hour", "min", "sec".

[S.], [S.] +1, [S.] +2 : real time clock, assign "hour", "min", "sec".
[D.], [D.] +1, [D.] +2 : According result of comparison, device of 3 bits from the head address of [D.] is ON/OFF automatically.

Setting range of "hour", "min", "sec" compare with real time clock, reference to FNC160 (TCMP).

Time Addition

	FNC(162	2)	16 bit	s: TADI	D & TAD	D(P) - ·			7	' steps		J1n	J2n	J3n
	TADD	Р												
Opera	ands:						←[[S1.][S2.	\mapsto					
	erands: K,H KnX KnY KnM KnS T C D V,													
	-						<	- [D.] -	\rightarrow					

Operands:

Y M S

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devi	ces		nde: oint		Str- ing		onsta Il num	
Туре	Х	Υ	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]												٠	•	•								
[S2.]												٠	•	•								
[D.]												•										

Flag: M8020, M8021, M8022

Х

- The time value stored at 3 bits from the head address of [S1.] add the time value stored at 3 bits from the head address of [S2.], then stored the result at the device of 3 bits from the head address of [D.].
- If the result greater than "24", carry flag M8022 ON, and the value of addend subtract 24, then stored at [D.].

- The result is "0" (0hour 0min 0sec), then zero flag M8020 ON.
- Setting range of "hour", "min", "sec" compare with real time clock, reference to FNC160 (TCMP) instruction.

Time Subtraction

FNC(16	3)	16 bit	s: TSU	3 & TSL	JB(P) - ·			7	' steps		J1n	J2n	J3n
TSUB	Р												
Operands:						←──[S1.][S2.] →→					
	erands: $ $ [S1.][S2.] \longrightarrow K,H KnX KnY KnM KnS T C D V,												
						←	- [D.] ·	\longrightarrow					

Operands:

Y M S

Oper -and			Bi	t De	vice	s		Bit		neToWo rices	ord	W	ord [Devid	ces		nde: ointe		Str- ing		onsta Il num	
Туре	Х	Υ	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]												٠	٠	•								
[S2.]												٠	٠	•								
[D.]												lacksquare	ullet	•								

Flag: M8020, M8021, M8022

Х

• The time value stored at 3 bits from the head address of [S1.] subtract the time value stored at 3 bits from the head address of [S2.], then stored the result at the device of 3 bits from the head address of [D.].

♦ The result less than "0", borrow flag ON, and the result of subtraction added 24, then stored at [D.]

♦ The result is "0" (0hour 0min 0sec), then zero flag M8020 ON.

♦ Setting range of "hour", "min", "sec" compare with real time clock, reference to FNC160(TCMP) instruction.

Time Read

	FNC(166	5)	16 bit	s: TRD	& TRD((P) ·			5	i steps	J1n	J2n	J3n
	TRD	Р											
Opera	ands:												
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
	-						←	- [D.] -	\rightarrow				

Operands:

S Occupy 7 bits from the head address of [D.]

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devid	ces		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]												•	٠	•								

Flag:

X000		[D.]	
	TRD	D 0	The data of real time clock stored at destination device of 7 bits from the head address of [D.]

Device	Item	Data
D8018	Year	0~99(last two figure)
D8017	Month	1~12
D8016	Date	1~31
D8015	Hours	0~23
D8014	Minutes	0~59
D8013	Seconds	0~59
D8019	Week	0(Sun)~6(Sat)

Y

Х

М

	Device	Item
\rightarrow	D0	Year
	D1	Month
\rightarrow	D2	Date
\rightarrow	D3	Hours
\rightarrow	D4	Minutes
\rightarrow	D5	Seconds
\rightarrow	D6	Week

Time Write

F	FNC(167	7)	16 bit	s: TWR	& TWR	(P)			5	steps	J1n	J2n	J3n
	TWR	Р											
Opera	ands:						←	- [S.] -	\rightarrow				
		K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			

Operands:

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devio	ces		nde: oint		Str- ing		onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]																						

Flag:

X000 [S.] ┥┝ TWR P D 10

New time data write into special register D8013-D8019

Device	ltem	Data		Device	Item
D10	Year	0~99(last two figure)	\longrightarrow	D8018	Year
D11	Month	1~12	\longrightarrow	D8017	Month
D12	Date	1~31	\longrightarrow	D8016	Date
D13	Hours	0~23	\rightarrow	D8015	Hours
D14	Minutes	0~59	\longrightarrow	D8014	Minutes
D15	Seconds	0~59	\longrightarrow	D8013	Seconds
D16	Week	0(Sun)~6(Sat)	\longrightarrow	D8019	Week

執行 FNC167 (TWR)命令後,內部時鐘的時間資料,立即變更為所寫入的新設時間值。因此,請先將數分鐘後數值 寫入[S.]組件,待實際時間到達時再執行 TWR 命令,而且利用本命令來校正時間,則不需再使用特殊繼電器 M8015(時 間停止和時間校正)。

FN	C(170	D)		16 b	oits:	GRY 8	GRY(P)				5	5 ste	os			J1n	J2	n	J3n-
DC	GRY	Ρ		32 b	oits:	(D)GR	Y & (D)GRY(F	P)			{	9 ste	ps						
Operand	ls:	←						[S.]						\rightarrow						
		K,⊦	1	KnX		KnY	KnM	KnS	Т	С		D	V,	Z						
					┥				[D.]					\rightarrow						
Operand	ls:																			
		Х		Y		М	S													
^							D.	0 h '	T - \ \ / -					_	La d		01		.	1 1
Oper ∙and		Bi	t Dev	vices	;		Br		neToWo rices	ora	Wo	ord D	evice	s	Ind Poir		Str- ing		Cons eal ni	umber
Туре 🛛	ΧY	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	/ Z	-		K	H	
[S.]							•	•	•	•	•	•	•					•	•)
[D.]								•	•		•	•	•							
×0 		- 0	GRY		-	61.] 1234	D] [D] [D]	_	[S.](E	BIN) →	[D.]	(GR	Y)							
BIN 1	234	b15 0		0	0	0	1 0	0 1	I 1	0 1	0	0	1	b0 0						
						Y23		Y20 Y					1	<u> </u>						
											1			1						
GRY ⁻	1234					0	1 1	0	1 0	1 1	1	0	1	1						

♦[S.] effective value range

When 16 bits operation : 0~32,767 When 32 bits operation : 0~2,147,483,647

GRAY CODE

FNC(17	1)	16 bit	s:GBIN	& GBIN	I(P)			!	5 steps	J1n	J2n	J3n
D GBIN	Р	32 bit	s:(D)GE	3IN & (C)GBIN(P) ·		;	9 steps			
Operands:	←				[S.]							
	K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
			<			[D.]			→			
Operands:												

Х Υ Μ S

Oper -and	Bit Devices					BitCombineToWord Devices			Word Devices			Index Pointer		Str- Con ing Real r		onsta Il num						
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]								•	•	•	•	•	•	•		•	•					
[D.]									۲	۲	•			•		۲	•					

Flag:

- ٠ 將 GRAY CODE 轉換成 BIN 數值的轉換傳送命令,可利用 GRAY CODE 方式的編碼器,作絕對位置的檢出。
- 指定 [S.] 為輸入(X)時,會有「掃瞄時間+輸入濾波器常數」的反應延遲時間。 ۲
- 使用 D GBIN 命令時,可執行最多 32 位的 GRAY CODE 相反轉換 ٠
- ♦ When FNC51 (REFF) be used, need notice filter time (D8020-D8037) will response time.
- ♦[S.] effective value range
 - When 16 bits operation: 0~32,767 When 32 bits operation: 0~2,147,483,647

BK+ / Block Data Addition

F	FNC(192)		16 bits: BK+ & BK+P(P)	- 9 steps		
D	BK+	Р	32 bits:(D)BK+ & (D)BK+(P)	17 steps		

Reserved

BK- / Block Data Subtraction

	FNC(193)		16 bits: BK- & BK-(P) 9 steps		
D	BK-	Р	32 bits:(D)BK- (D)BK-P) 17 steps		

Reserved

BKCMP=, >,<, < >, <=, >= / Block Data Compare

	FNC(194)		16 bits: BKCMP= & BKCMP=P(P) 9 steps		
D	BKCMP=	Ρ	32 bits:(D)BKCMP= (D)BKCMP=P(P) 17 steps		
Rese	rved				

FNC(195) 16 bits: BKCMP> & BKCMP>P(P) -----9 steps D BKCMP> P 32 bits:(D)BKCMP>(D)BKCMP>P(P) ----- 17 steps

Reserved

	FNC(196)		16 bits: BKCMP< & BKCMP<(P) 9 steps		
D	BKCMP<	Р	32 bits:(D)BKCMP< (D)BKCMP <p(p) 17="" steps<="" th=""><th></th><th></th></p(p)>		
<u> </u>					

Reserved

	FNC(197)		16 bits: BKCMP<> & BKCMP<>P(P)9 steps		
D	BKCMP<>	Р	32 bits:(D)BKCMP<> (D)BKCMP<>(P) 17 steps		
-					

Reserved

	FNC(198)		16 bits: BKCMP<= & BKCMP<=P(P) 9 steps		
D	BKCMP<=	Р	32 bits:(D)BKCMP<= (D)BKCMP<=P(P) 17 steps		
Rese	arved				

Reserved

FNC(199)	16 bits: BKCMP>= & BKCMP>=P(P) 9 steps	
D BKCMP>= P	32 bits:(D)BKCMP>= (D)BKCMP>=P(P) 17 steps	

Reserved

FDEL / Deleting Data from Tables

FNC(210)		16 bits: FDEL & FDEL(P) 7		
FDEL F)			

Reserved

FINS / Inserting Data toTables

FNC(211)		16 bits: FINS & FINS(P) 7 steps		
FINS	Р			

Reserved

POP/ Shift Last Data Read [LIFO Control]

	FNC(2	12)		16	bits: PC)P & PC)P(P)				7 steps			J3n
	POF	2	Ρ											
Opera	ands:				←		[S.] [D.]	-	\longrightarrow				
		K,	Н	KnX	KnY	KnM	KnS	Т	С	D	V,Z			
		← [n	.] >							← [n.]→	•			
Opera	ands:													
		Х	(Y	М	S								

Oper -and			Bi	t De	evice	es		Bit		neToWo vices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	М	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S.]									•	•	•	٠	٠	•								
[D.]									•	•	•	٠	٠	•								
[n.]														•						•	•	

Flag:

Data for first-in last-out control

	Description
[S.]	Pointer data (number of stored data)
[S.]+1	
[S.]+2	
[S.]+3	
	Data area (First-in data written by shift write (SFWR) instruction)
[S.]+n-3	
[S.]+n-2	
[S.]+n-1	

• Every time the instruction is executed for the word devices [S.] to [S.]+n-1,a device "[S.] + Pointer data [S.]" is read to [D.]. (The last data written by the shift write (SFWR) instruction for first-in first-out control is read to [D.]. Specify "n" in the range from "2" to "512".

•Subtract "1" from the value of the pointer data [D.]

 			-	- Data	area -					Pointer
[S.]+n-1	[S.]+n-2	~	[S.]+	6 [S.]	+5 [S	6.]+4	[S.]+3	[S.]+2	[S.]+1	[S.]
									In the	case of K4
 			— No (change in	data area	·				\downarrow
[S.]+n-1	[S.]+n-2	~	[S.]+6	[S.]+5	[S.]+4	[S.]+	-3 [S.]+	·2 [S.]+	1 [S.]	[D.]
									K4→K3	

Cautions

• When this instruction is programmed in the continuous operation type, the instruction is executed in every operation cycle. As a result, an expected operation may not be achieved. Usually, program this instruction in the "pulse operation type", or let this instruction be executed by a "pulsed command contact".

• When the current value of the pointer [S.] is "0", the zero flag M8020 turns ON and the instruction is not executed. Check in advance using a comparison instruction whether the current value of [S.] satisfies "1 \leq [S.] \leq n-1", and then execute this instruction.

• When the current value of the pointer [S.] is "1", "0" is written to [S.] and the zero flag M8020 turns ON.

SFR / Bit Shift Right with Carry

	FNC	(213	3)		1	16 bi	its: SFI	R & SF	R(P) - ·					- 5 s	teps				J1n	J	2n	J3n
	S	FR		Ρ																		
Opera	nds:					€	<u>,</u>		[D.]]			-		\rightarrow							
			K,⊦	4	Knλ	X	KnY	KnM	KnS	Т	С		D	\	/,Z							
		€	-				_	[r	າ.]						\rightarrow	Ī						
Opera	nds:																					
			Х		Y		М	S														
		L																				
Oper			Bi	t Do	vice	2		Bi	tCombi	neToWo	ord	W	ord [Devid	201		nde		Str-		onsta	
-and						.3			Dev	rices		~~~	JIUL		.03	P	ointe	∋r	ing	Rea	al num	lber
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[D.]									•	\bullet	•	\bullet	\bullet	•		\bullet	\bullet					
[n.]								•	•	•	•		•	•						•		
Flag:																						_

Ū

16-bit

X000		[D.]	[n]
	SFRP		

1) 16 bits stored in a word device [D.] are shifted rightward by "n" bits. Specify a value in the range from "0" to "15" as "n". If "16" or larger value is specified as "n", 16 bits are shifted rightward by the remainder of "n/16".

For example, when "n" is set to "18", 16 bits are shifted rightward by 2 bits ($18/16 = 1 \dots 2$).

2) The ON (1)/OFF (0) status of the "n"th bit (bit "n-1") in the word device [D.] is transferred to the carry flag M8022.
3) "0" is set to "n" bits from the most significant bit.

Become "0"

SFL / Bit Shift Left with Carry

F	FNC	(21	4)			16 b	its: SF	L & SFL	_(P)					5 st	eps				J1n	J	2n	J3n
	S	FL		Ρ																		
Operar	nds:					€				[D.]			-		\rightarrow							
			K,⊦	1	Kn	X	KnY	KnM	KnS	Т	С		D	١	/,Z							
		-	<				_	[r	າ.]						\rightarrow	Ī						
Operar	nds:	_																				
			Х		Y		М	S														
Oper			Bi	t De	vice	es		Bit		neToWc	ord	W	ord D	Devid	es		ndex		Str-	-	onsta	
-and	V	V	54	S	т	С	Dn.b	KnX	KnY	ices KnM	KnS	т	С		R		ointe Z	۶۲ P	ing	Kea	al num	near E
Туре	^	ſ	Μ	3	I	C	ט.חט	NUV	NI I	NIIVI	rus.			D	R	V	2	٢		Ň	Н	

•

Flag:

[D.]

[n.]

16bit				
X000		[D.]	[n]	
	SFLP			

1) 16 bits stored in a word device [D.]are shifted leftward by "n" bits. Specify a value in the range from "0" to "15" as "n". If "16" or larger value is specified as "n", 16 bits are shifted leftward by the remainder of "n/16".

For example, when "n" is set to "18", 16 bits are shifted leftward by 2 bits $(18/16 = 1 \dots 2)$.

2) The ON (1)/OFF (0) status of the "n+1"th bit (bit "n") in the word device [D.] is transferred to the carry flag M8022.

3) "0" is set to "n" bits from the least significant bit.

Become "0".

LD ※ (LoaD compare)

FN	IC(224~2	30)	16 bits: 5 steps	J1n	J2n	J3n
D	LD ※		32 bits: 9 steps			

<, <>, ∣←──	\geq , \leq		[S1.][S2.]				──→
K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z

Operands:

X Y M S

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devic	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	•	•	•		٠	٠			\bullet	•	
[S2.]								•		•				•								

Flag:

• Comparison of BIN to the content of two source operands, according the result, update operate status

FNC No.	16 bits instruction	32 bits instruction	ON	OFF
224	LD =	D LD =	[S1.] = [S2.]	[S1.]≠[S2.]
225	LD >	D LD >	[S1.] > [S2.]	[S1.]≦ [S2.]
226	LD <	D LD <	[S1.] < [S2.]	[S1.]≥ [S2.]
228	LD < >	D LD < >	[S1.]≠[S2.]	[S1.] = [S2.]
229	LD≦	DLD≦	[S1.]≦ [S2.]	[S1.] > [S2.]
230	LD≧	DLD≧	[S1.]≧ [S2.]	[S1.] < [S2.]

- ♦ The upper bit of [S1.][S2.] is sign bit, i.e. 0: positive, 1: negative
- If use 32 bits counter (C200~) to compare, have to use 32 bits instruction.
 If use 16 bits instruction to compare, then error will occur.

AND ※ (AND compare) AND=, AND>, AND<, AND<>, AND<=, AND>=

FNC(232~2	238)	16 bit	s:					5	steps	J1n	J2n	J3n
D AND ※		32 bit	s:					9	steps			
×		~ `										
, , , , , , , , , , , , , , , , , , ,	< , <> , <	\geq , \leq		— (S1.][S2.]				─── >			
	K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z			

Operands:

X Y M S

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devio	es		nde: ointe		Str- ing	-	onsta Il num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	•	•	•		٠	•			•	•	
[S2.]								•	•	•	•	•	•	•		•	•			•	•	

Flag:

• Comparison of BIN to the content of two source operands, according to the result, update operate status.

FNC No.	16 bits instruction	32 bits instruction	ON	OFF
232	AND =	D AND =	[S1.] = [S2.]	[S1.]≠[S2.]
233	AND >	D AND >	[S1.] > [S2.]	[S1.]≤ [S2.]
234	AND <	D AND <	[S1.] < [S2.]	[S1.]≥ [S2.]
236	AND < >	D AND < >	[S1.]≠[S2.]	[S1.] = [S2.]
237	AND≦	D AND≦	[S1.]≦ [S2.]	[S1.] > [S2.]
238	AND≧	D AND≧	[S1.]≧ [S2.]	[S1.] < [S2.]

- The upper bit of [S1.][S2.] is sign bit, i.e. 0: positive, 1: negative
- Use 32 bits counter (C200~) to compare, have to use 32 bits instruction.
 If use 16 bits instruction to compare, then error will occur.

OR ※ (OR compare) OR=, OR>, OR<, OR<>, OR<=, OR>=

FN	C(240~2	46)	16 bits: 5 steps	J1n	J2n	J3n
D	OR ※		32 bits: 9 steps			
	=,>,<, ands: ′_∣∢	<> ,≦	_,≧ [S1.][S2.]>			

perands:	, <> , ≦ ←	$, \leq$		— [³	S1.][S2.]				>
	K,H	KnX	KnY	KnM	KnS	Т	С	D	V,Z

Operands:

X Y M S

Oper -and			Bi	t De	evice	s		Bit		neToWo rices	ord	W	ord [Devid	es		nde: ointe		Str- ing	-	onsta I num	
Туре	Х	Υ	Μ	S	Т	С	Dn.b	KnX	KnY	KnM	KnS	Т	С	D	R	V	Ζ	Ρ		Κ	Н	Е
[S1.]								•	•	•	•	٠	•	•		۲	٠				٠	
[S2.]								•	•	•	•	•	•	•			•					

Flag:

• Comparison of BIN to the content of two source operands, according the result, update operate status.

FNC No.	16 bits instruction	32 bits instruction	ON	OFF
240	OR =	D OR =	[S1.] = [S2.]	[S1.]≠[S2.]
241	OR >	D OR >	[S1.] > [S2.]	[S1.]≤ [S2.]
242	OR <	D OR <	[S1.] < [S2.]	[S1.]≥ [S2.]
244	OR < >	D OR < >	[S1.]≠[S2.]	[S1.] = [S2.]
245	OR≦	D OR≦	[S1.]≦ [S2.]	[S1.] > [S2.]
246	OR≧	D OR≧	[S1.]≧ [S2.]	[S1.] < [S2.]

- ◆ The upper bit of [S1.][S2.] is sign but, i.e. 0:positive, 1:negative
- When use 32 bits counter (C200~) to compare, then have to use 32 bits instruction.
 If use 16 bits instruction to compare, then error will occur.

LIMIT / Limit Control

	FNC(256)		16 bits: LIMIT & LIMIT(P) 9 steps			
D	LIMIT	Ρ	32 bits: DLIMIT & DLIMIT(P) 17 steps			

Reserved

BAND/ Dead Band Control

	FNC(257)		16 bits: BAND & BAND(P) 9 steps		
D	BAND	Р	32 bits: DBAND & DBAND(P) 17 steps		
Dee	ام م بر م				

Reserved

ZONE / Zone Control

	FNC(258)		16 bits: ZONE & ZONE(P) 9 steps		
D	ZONE	Ρ	32 bits: DZONE & DZONE (P) 17 steps		

Reserved

SCL / Scaling (Coordinate by Point Data)

	FNC(259)		16 bits: SCL & SCL (P) 7 steps		
D	SCL	Р	32 bits: DSCL & DSCL (P) 13 steps		

Reserved

DABIN / Decimal ASCII to BIN Conversion

	FNC(260)		16 bits: DABIN & DABIN (P) 5 steps			
D	DABIN	Ρ	32 bits: DDABIN & DDABIN (P) 9 steps			

Reserved

BINDA / BIN to Decimal ASCII Conversion

FNC(261)			16 bits: BINDA & BINDA (P) 5 steps			
D	BINDA	Ρ	32 bits: BINDA & BINDA (P) 9 steps			

Reserved

SCL2 / Scaling 2(Coordinate by X/Y Data)

FNC(269)			16 bits: SCL2 & SCL2 (P) 7 steps			
D	SCL2	Ρ	32 bits: DSCL2 & DSCL2 (P) 13 steps			

Reserved

HSCT / High Speed Counter Compare by X/Y Data)

FNC(280)						
D	HSCT	Р	32 bits: DHSCT &	21 steps		

Reserved

Note